IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006545.html
   My bibliography  Save this article

Assessment of water demand reliability using SWAT and RIBASIM models with respect to climate change and operational water projects

Author

Listed:
  • Ahmadzadeh, Hojat
  • Mansouri, Bahareh
  • Fathian, Farshad
  • Vaheddoost, Babak

Abstract

Reliability assessment in the allocation of water resources under the changing climate condition has invaluable importance in planning the water demand at the basin scale. This study details an integrated framework for evaluation of the reliability between water supply and demand under climate change scenarios in the Zarrineh Rood River basin in the northwest of Iran. Initially, recorded climatic data in six synoptic stations are downscaled and projected for the period 2020–2040 based on the 14 GCMs using the LARS-WG method. Afterwards, the SWAT model is used to simulate the basin hydrology with consideration to the baseline and future climate periods at six hydrometric stations. Finally, the available water is allocated using the RIBASIM model based on the current supply-demand chain and predefined governmental water allocation rules for different sectors. Results showed that under climate change, the total runoff of the basin and the entrance catchments to the Zarrineh Rood River dam would decrease about 8% and 28%, respectively. The reliability of the water supply for joint drinking-industrial and agricultural demands would also decrease from 96.4% to 93.4%, and 90.2–89.5%, respectively. As such, the average annual streamflow from the Zarrineh Rood River ending to Lake Urmia will reduce by 10% if the operational water projects remain active.

Suggested Citation

  • Ahmadzadeh, Hojat & Mansouri, Bahareh & Fathian, Farshad & Vaheddoost, Babak, 2022. "Assessment of water demand reliability using SWAT and RIBASIM models with respect to climate change and operational water projects," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006545
    DOI: 10.1016/j.agwat.2021.107377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shrestha, Sangam & Bach, Tran Viet & Pandey, Vishnu Prasad, 2016. "Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios," Environmental Science & Policy, Elsevier, vol. 61(C), pages 1-13.
    2. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    3. Babak Vaheddoost & Hafzullah Aksoy, 2019. "Reconstruction of Hydrometeorological Data in Lake Urmia Basin by Frequency Domain Analysis Using Additive Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3899-3911, September.
    4. Ahmadzadeh, Hojat & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2016. "Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment," Agricultural Water Management, Elsevier, vol. 175(C), pages 15-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boran Zhu & Junqiang Lin & Yi Liu & Di Zhang & Qidong Peng & Yufeng Ren & Jiejie Chen & Yi Xu, 2024. "Multi-Risk Interaction Analysis of Cascade Hydropower Stations Based on System Dynamics Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 45-62, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    2. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    4. Sain, Gustavo & Loboguerrero, Ana María & Corner-Dolloff, Caitlin & Lizarazo, Miguel & Nowak, Andreea & Martínez-Barón, Deissy & Andrieu, Nadine, 2017. "Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala," Agricultural Systems, Elsevier, vol. 151(C), pages 163-173.
    5. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    7. Arnold J. Bomans & Peter Roessingh, 2024. "Decision Change: The First Step to System Change," Sustainability, MDPI, vol. 16(6), pages 1-22, March.
    8. Farzad Emami & Manfred Koch, 2018. "Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change," Sustainability, MDPI, vol. 10(11), pages 1-32, October.
    9. Marjolijn Haasnoot & Maaike Aalst & Julie Rozenberg & Kathleen Dominique & John Matthews & Laurens M. Bouwer & Jarl Kind & N. LeRoy Poff, 2020. "Investments under non-stationarity: economic evaluation of adaptation pathways," Climatic Change, Springer, vol. 161(3), pages 451-463, August.
    10. Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
    11. Sierra C. Woodruff, 2016. "Planning for an unknowable future: uncertainty in climate change adaptation planning," Climatic Change, Springer, vol. 139(3), pages 445-459, December.
    12. Kashif Haleem & Afed Ullah Khan & Jehanzeb Khan & Abdulnoor A. J. Ghanim & Ahmed M. Al-Areeq, 2023. "Evaluating Future Streamflow Patterns under SSP245 Scenarios: Insights from CMIP6," Sustainability, MDPI, vol. 15(22), pages 1-21, November.
    13. Berchoux, Tristan & Hutton, Craig W. & Hensengerth, Oliver & Voepel, Hal E. & Tri, Van P.D. & Vu, Pham T. & Hung, Nghia N. & Parsons, Dan & Darby, Stephen E., 2023. "Effect of planning policies on land use dynamics and livelihood opportunities under global environmental change: Evidence from the Mekong Delta," Land Use Policy, Elsevier, vol. 131(C).
    14. Stanton, Muriel C. Bonjean & Roelich, Katy, 2021. "Decision making under deep uncertainties: A review of the applicability of methods in practice," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    15. Decker, Christopher, 2018. "Utility and regulatory decision-making under conditions of uncertainty: Balancing resilience and affordability," Utilities Policy, Elsevier, vol. 51(C), pages 51-60.
    16. Andrieu, N. & Sogoba, B. & Zougmore, R. & Howland, F. & Samake, O. & Bonilla-Findji, O. & Lizarazo, M. & Nowak, A. & Dembele, C. & Corner-Dolloff, C., 2017. "Prioritizing investments for climate-smart agriculture: Lessons learned from Mali," Agricultural Systems, Elsevier, vol. 154(C), pages 13-24.
    17. Dehghanipour, Amir Hossein & Zahabiyoun, Bagher & Schoups, Gerrit & Babazadeh, Hossein, 2019. "A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Manfei Zhang & Xiao Wang & Weibo Zhou, 2021. "Effects of Water-Saving Irrigation on Hydrological Cycle in an Irrigation District of Northern China," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    19. Evelyn Corona-López & Alma D. Román-Gutiérrez & Elena M. Otazo-Sánchez & Fabiola A. Guzmán-Ortiz & Otilio A. Acevedo-Sandoval, 2021. "Water–Food Nexus Assessment in Agriculture: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-14, May.
    20. Amadu, Festus O. & Miller, Daniel C. & McNamara, Paul E., 2020. "Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi," Ecological Economics, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.