IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v237y2020ics0378377419321109.html
   My bibliography  Save this article

Varietal adaptations matter for agricultural water use – a simulation study on grain maize in Western Switzerland

Author

Listed:
  • Holzkämper, Annelie

Abstract

Climate change is altering agricultural production conditions. Adaptation measures to reduce negative impacts of climate change and utilize emerging potentials may involve the increased use of irrigation water. With increased irrigation water consumption, water use conflicts and resource constraints may occur and aggravate under climate change. Estimates of expected changes in irrigation water demands are of great value to anticipate if and where such issues may arise. This study presents an analysis of projected changes in irrigation water demand and grain yield of maize subject to variation in cultivar choice, sowing dates, soil depth and texture, as well as climate projection uncertainty and crop model parameterization uncertainty. Study results suggest that varietal choice opens up a large scope for adaptation of future grain maize productivity with important implications for agricultural water use. Assuming that no mitigation measures are taken (RCP8.5), the cultivation of late-maturing varieties in combination with earlier sowing can be considered a suitable adaptation choice, even allowing for increasing yield levels until mid-century. However, with this adaptation choice, irrigation water demands could be expected to increase by up to 40% until the end of the century. While absolute estimates of irrigation water demands are strongly dependent on soil depth (and to a much smaller degree on soil texture), change signals of irrigation water demands were largely unaffected by variation in soil parameters. However, estimates of future changes in irrigation water demands are subject to large uncertainties originating from climate projection uncertainties, implying possible increases in irrigation water demands between <10% and>60%. Increases in irrigation water demands could be constrained by cultivating early-maturing varieties at the expense of lower production potentials. Selection and breeding efforts steered towards early varieties with extended grain filling duration may help to increase yield potentials.

Suggested Citation

  • Holzkämper, Annelie, 2020. "Varietal adaptations matter for agricultural water use – a simulation study on grain maize in Western Switzerland," Agricultural Water Management, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s0378377419321109
    DOI: 10.1016/j.agwat.2020.106202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419321109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    2. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    4. Leclère, David & Jayet, Pierre-Alain & de Noblet-Ducoudré, Nathalie, 2013. "Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change," Ecological Economics, Elsevier, vol. 87(C), pages 1-14.
    5. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    6. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    7. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Ricart & Jorge Olcina & Antonio M. Rico, 2018. "Evaluating Public Attitudes and Farmers’ Beliefs towards Climate Change Adaptation: Awareness, Perception, and Populism at European Level," Land, MDPI, vol. 8(1), pages 1-24, December.
    2. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    3. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    6. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    7. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Ölkers, Tim & Liu, Shuang & Mußhoff, Oliver, 2023. "A typology of Malian farmers and their credit repayment performance - An unsupervised machine learning approach," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334547, Agricultural Economics Society - AES.
    10. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    11. Basak Bayramoglu & Raja CHAKIR & Anna LUNGARSKA, 2016. "Land Use and Freshwater Ecosystems in France," EcoMod2016 9420, EcoMod.
    12. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Tran, Thong Anh & Nguyen, Tri Huu & Vo, Thang Tat, 2019. "Adaptation to flood and salinity environments in the Vietnamese Mekong Delta: Empirical analysis of farmer-led innovations," Agricultural Water Management, Elsevier, vol. 216(C), pages 89-97.
    14. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Zagaria, Cecilia & Schulp, Catharina J.E. & Zavalloni, Matteo & Viaggi, Davide & Verburg, Peter H., 2021. "Modelling transformational adaptation to climate change among crop farming systems in Romagna, Italy," Agricultural Systems, Elsevier, vol. 188(C).
    16. Tiruye, A. E. & Belay, S. A. & Schmitter, Petra & Tegegne, Desalegn & Zimale, F. A. & Tilahun, S. A., 2023. "Yield, water productivity and nutrient balances under different water management technologies of irrigated wheat in Ethiopia," Papers published in Journals (Open Access), International Water Management Institute, pages 1-1(12):000.
    17. Sandra Ricart & Anna Ribas & David Pavón, 2016. "Qualifying irrigation system sustainability by means of stakeholder perceptions and concerns: lessons from the Segarra‐Garrigues Canal, Spain," Natural Resources Forum, Blackwell Publishing, vol. 40(1-2), pages 77-90, February.
    18. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    19. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    20. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:237:y:2020:i:c:s0378377419321109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.