IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp12-26.html
   My bibliography  Save this article

Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans

Author

Listed:
  • Mandal, Uttam Kumar
  • Burman, D.
  • Bhardwaj, A.K.
  • Nayak, Dibyendu Bikas
  • Samui, Arpan
  • Mullick, Sourav
  • Mahanta, K.K.
  • Lama, T.D.
  • Maji, B.
  • Mandal, Subhasis
  • Raut, S.
  • Sarangi, S.K.

Abstract

Sundarbans in West Bengal, India located in the eastern coast of the Bay of Bengal is one of the vulnerable zones subjected to abrupt climate change. The region receives 2.7 times surplus rainfall as compared to crop evapotranspiration during monsoon months causing widespread waterlogging of the low lying agricultural fields and impedes the productivity. The present study assessed the effects of different land shaping models namely, farm pond (FP), deep furrow and high ridge (RF) and paddy cum fish (PCF) systems for rainwater harvesting in restoring the productivity of degraded coastal soils in Sundarbans. A water balance was run to estimate the soil moisture, crop evapotranspiration, runoff and water depth in the reservoir during normal, excess and deficit rainfall years. The average annual harvested runoff was 2709, 1650 and 1169 m3 per hectare in FP, RF and PCF systems, respectively. The runoff going out of the system was 19.5, 29.1 and 27.75% of the annual rainfall in FP, RF and PCF systems, respectively, whereas in monocrop rice-fallow system it was 34.6% of the annual rainfall. We estimated all the three components of water footprints (WF) i.e., blue WF (WFblue), green WF (WFgreen) and gray WF (WFgray) as an aggregative indicator to evaluate environmental impact. The results indicated that total as well as the components of WF was higher in rice-fallow and rice-rice systems than in each of the land shaping system. Large scale adoption of different land shaping systems increased the cropping intensity and net farm income and there was reduction in salinity during summer and waterlogging during rainy season and overall improvement in soil quality. The dominant soluble salts identified in the study region were NaCl and MgSO4.

Suggested Citation

  • Mandal, Uttam Kumar & Burman, D. & Bhardwaj, A.K. & Nayak, Dibyendu Bikas & Samui, Arpan & Mullick, Sourav & Mahanta, K.K. & Lama, T.D. & Maji, B. & Mandal, Subhasis & Raut, S. & Sarangi, S.K., 2019. "Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans," Agricultural Water Management, Elsevier, vol. 216(C), pages 12-26.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:12-26
    DOI: 10.1016/j.agwat.2019.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le, Thuy Ngan & Bregt, Arnold K. & van Halsema, Gerardo E. & Hellegers, Petra J.G.J. & Nguyen, Lam-Dao, 2018. "Interplay between land-use dynamics and changes in hydrological regime in the Vietnamese Mekong Delta," Land Use Policy, Elsevier, vol. 73(C), pages 269-280.
    2. B. Panigrahi & Sudhindra Panda & A. Agrawal, 2005. "Water Balance Simulation and Economic Analysis for Optimal Size of On-Farm Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 233-250, June.
    3. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    4. Kumar, Shalander & Ramilan, Thiagarajah & Ramarao, C.A. & Rao, Ch. Srinivasa & Whitbread, Anthony, 2016. "Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants," Agricultural Water Management, Elsevier, vol. 176(C), pages 55-66.
    5. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    6. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    7. Sharma, Bharat R. & Rao, K.V. & Vittal, K.P.R. & Ramakrishna, Y.S. & Amarasinghe, U., 2010. "Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements," Agricultural Water Management, Elsevier, vol. 97(1), pages 23-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishnendu Ray & Suman Mondal & Md. Jahangir Kabir & Sukamal Sarkar & Kalyan Roy & Koushik Brahmachari & Argha Ghosh & Manoj K. Nanda & Sanchayeeta Misra & Supriya Ghorui & Rupak Goswami & Mohammed Ma, 2023. "Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    2. Rupak Goswami & Riya Roy & Dipjyoti Gangopadhyay & Poulami Sen & Kalyan Roy & Sukamal Sarkar & Sanchayeeta Misra & Krishnendu Ray & Marta Monjardino & Mohammed Mainuddin, 2024. "Understanding Resource Recycling and Land Management to Upscale Zero-Tillage Potato Cultivation in the Coastal Indian Sundarbans," Land, MDPI, vol. 13(1), pages 1-23, January.
    3. Dipanwita De & Chandan Surabhi Das, 2021. "Measuring Livelihood Sustainability by PCA in Indian Sundarban," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18424-18442, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Datta, Nirupam, 2015. "Evaluating Impacts of Watershed Development Program on Agricultural Productivity, Income, and Livelihood in Bhalki Watershed of Bardhaman District, West Bengal," World Development, Elsevier, vol. 66(C), pages 443-456.
    2. Birhanu Zemadim Birhanu & Kalifa Traoré & Murali Krishna Gumma & Félix Badolo & Ramadjita Tabo & Anthony Michael Whitbread, 2019. "A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2459-2485, October.
    3. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    4. Deora, Shashank & Nanore, Gyanesh, 2019. "Socio economic impacts of Doha Model water harvesting structures in Jalna, Maharashtra," Agricultural Water Management, Elsevier, vol. 221(C), pages 141-149.
    5. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    6. Nesterenko Sergey & Vyatkin Konstantin, 2017. "The study of land management and geographic information support of municipal building in Ukraine," Technology audit and production reserves, 1(33) 2017, Socionet;Technology audit and production reserves, vol. 1(4(33)), pages 24-28.
    7. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    9. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    10. Getnet, Kindie & MacAlister, Charlotte, 2012. "Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations," Ecological Economics, Elsevier, vol. 76(C), pages 34-41.
    11. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    12. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    13. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    14. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    15. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    16. Anastasios Michailidis & Konstadinos Mattas & Irene Tzouramani & Diamantis Karamouzis, 2009. "A Socioeconomic Valuation of an Irrigation System Project Based on Real Option Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1989-2001, August.
    17. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    18. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    19. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    20. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.