IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8691-d1157412.html
   My bibliography  Save this article

Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India

Author

Listed:
  • Krishnendu Ray

    (Sasya Shyamala Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational & Research Institute, Arapanch, Sonarpur 700150, India)

  • Suman Mondal

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Md. Jahangir Kabir

    (Business School, University of New England, Armidale, NSW 2351, Australia)

  • Sukamal Sarkar

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Kalyan Roy

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Koushik Brahmachari

    (Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India)

  • Argha Ghosh

    (Department of Agricultural Meteorology, Odisha University of Agriculture and Technology (OUAT), Bhubaneswar 751003, India)

  • Manoj K. Nanda

    (Department of Agricultural Meteorology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India)

  • Sanchayeeta Misra

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Supriya Ghorui

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Rupak Goswami

    (School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur Campus, Kolkata 700103, India)

  • Mohammed Mainuddin

    (Water Security Program, CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia)

Abstract

Identifying productive, profitable, and less risky cropping systems is pivotal for ensuring sustainable farm–based livelihoods in the context of climatic uncertainties and market volatility, particularly in many developing nations. Conventional field crop research often identifies the best or optimal solutions based on treatment replicates at a specific point in time without considering the influence of market volatility and climatic uncertainties. To address this gap, we conducted an assessment of productivity profitability and climate– and market–uncertainty-driven risk for eleven different rice-based cropping systems (eight existing and three potential systems) in the coastal region of Gosaba Block, West Bengal, India. Farmers’ observations of the best, typical, and worst seasonal yields and price data for the selected cropping systems over the last five to seven years were collected from fifty farm households. Irrespective of the scenarios, the rice–lathyrus systems, followed by rice–onion and rice–lentil systems, recorded the lowest rice equivalent yields and system yields. However, the highest rice equivalent yields and system yields were recorded for rice–chilli systems, followed by rice–tomato and rice–potato–green-gram systems. Per hectare, total paid–out cost (TPC) of rice–tomato systems was higher, followed by rice–chilli, rice–potato–green–gram, and rice–potato systems. However, irrespective of seasonal conditions (best, normal, and worst), rice–chilli systems gave a higher net return followed by rice–tomato and rice–potato–green–gram systems. The rice–fallow system recorded the lowest value for both parameters. Under the worst seasonal conditions, the rice–onion system gave a negative net return. Under all the scenarios, the rice–chilli system gave the highest benefit over cost, followed by the rice–tomato, rice–potato–green-gram, and rice–potato systems. The cumulative probability distribution (CDF) of per ha net income of the rice–tomato system showed first–degree stochastic dominance over other systems, implying that the system is economically the most profitable and less risky. Additionally, the CDF of net income per ha of the rice–chilli system showed second–degree stochastic dominance over the rest of the systems, indicating that the system is economically more profitable and less risky than other rice/non–rice cropping systems except for the rice–tomato system. Furthermore, the risk analysis results suggest that the likelihood of obtaining negative net income was nil for the selected cropping systems, except the rice–onion system had a slight chance (<1%) of providing a negative net return. Considering the productivity and economic viability (e.g., profitability and risk) of different rice–based systems, it is recommended to promote the adoption of the rice–vegetable systems, especially rice–tomato and rice–chilli from among the existing systems and rice–potato–green-gram systems from among the potential systems, for achieving sustainable intensification in these coastal saline tracts of the region.

Suggested Citation

  • Krishnendu Ray & Suman Mondal & Md. Jahangir Kabir & Sukamal Sarkar & Kalyan Roy & Koushik Brahmachari & Argha Ghosh & Manoj K. Nanda & Sanchayeeta Misra & Supriya Ghorui & Rupak Goswami & Mohammed Ma, 2023. "Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8691-:d:1157412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cortner, O. & Garrett, R.D. & Valentim, J.F. & Ferreira, J. & Niles, M.T. & Reis, J. & Gil, J., 2019. "Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon," Land Use Policy, Elsevier, vol. 82(C), pages 841-853.
    2. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Bhan, Subhash C., 2021. "Climate change and land-use in Indian agriculture," Land Use Policy, Elsevier, vol. 109(C).
    3. Kabir, Md. Jahangir & Cramb, Rob & Gaydon, Donald S. & Roth, Christian H., 2018. "Bio-economic evaluation of cropping systems for saline coastal Bangladesh: III Benefits of adaptation in current and future environments," Agricultural Systems, Elsevier, vol. 161(C), pages 28-41.
    4. Mandal, Uttam Kumar & Burman, D. & Bhardwaj, A.K. & Nayak, Dibyendu Bikas & Samui, Arpan & Mullick, Sourav & Mahanta, K.K. & Lama, T.D. & Maji, B. & Mandal, Subhasis & Raut, S. & Sarangi, S.K., 2019. "Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans," Agricultural Water Management, Elsevier, vol. 216(C), pages 12-26.
    5. Ashisa K. Prusty & Ravisankar Natesan & Azad S. Panwar & Mangi L. Jat & Jagdish P. Tetarwal & Santiago López-Ridaura & Roos Adelhart Toorop & Jelle van den Akker & Jashanjot Kaur & Prakash C. Ghasal &, 2022. "Redesigning of Farming Systems Using a Multi-Criterion Assessment Tool for Sustainable Intensification and Nutritional Security in Northwestern India," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    6. Ray, Lala I.P. & Swetha, K. & Singh, A.K. & Singh, N.J., 2023. "Water productivity of major pulses – A review," Agricultural Water Management, Elsevier, vol. 281(C).
    7. Jean-Paul Chavas & Robert G. Chambers & Rulon D. Pope, 2010. "Production Economics and Farm Management: a Century of Contributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(2), pages 356-375.
    8. Rasul, Golam & Thapa, Gopal B., 2004. "Sustainability of ecological and conventional agricultural systems in Bangladesh: an assessment based on environmental, economic and social perspectives," Agricultural Systems, Elsevier, vol. 79(3), pages 327-351, March.
    9. H. M. Vinaya Kumar & N. B. Chauhan & D. D. Patel & J. B. Patel, 2019. "Predictive factors to avoid farming as a livelihood," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-18, December.
    10. Kabir, Md. Jahangir & Cramb, Rob & Alauddin, Mohammad & Gaydon, Donald S., 2019. "Farmers’ perceptions and management of risk in rice-based farming systems of south-west coastal Bangladesh," Land Use Policy, Elsevier, vol. 86(C), pages 177-188.
    11. Kabir, Md. Jahangir & Gaydon, Donald S. & Cramb, Rob & Roth, Christian H., 2018. "Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments," Agricultural Systems, Elsevier, vol. 162(C), pages 107-122.
    12. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Roushon Jamal & Paul Kristiansen & Md Jahangir Kabir & Lisa Lobry de Bruyn, 2023. "Challenges and Adaptations for Resilient Rice Production under Changing Environments in Bangladesh," Land, MDPI, vol. 12(6), pages 1-21, June.
    2. Subhasis Mandal & B. Maji & S. K. Sarangi & K. K. Mahanta & U. K. Mandal & D. Burman & S. Digar & M. Mainuddin & P. C. Sharma, 2020. "Economics of cropping system intensification for small-holder farmers in coastal salt-affected areas in West Bengal: options, challenges and determinants," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(1), pages 19-33, March.
    3. Carcedo, Ana J.P. & Bastos, Leonardo M. & Yadav, Sudhir & Mondal, Manoranjan K. & Jagadish, S.V. Krishna & Kamal, Farhana A. & Sutradhar, Asish & Prasad, P.V. Vara & Ciampitti, Ignacio, 2022. "Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh," Agricultural Systems, Elsevier, vol. 200(C).
    4. Assefa, Yared & Yadav, Sudhir & Mondal, Manoranjan K. & Bhattacharya, Jayanta & Parvin, Rokhsana & Sarker, Shilpi R. & Rahman, Mahabubur & Sutradhar, Asish & Prasad, P.V. Vara & Bhandari, Humnath & Sh, 2021. "Crop diversification in rice-based systems in the polders of Bangladesh: Yield stability, profitability, and associated risk," Agricultural Systems, Elsevier, vol. 187(C).
    5. Kabir, Jahangir & Cramb, Rob & Alauddin, Mohammad & Gaydon, Donald S. & Roth, Christian H., 2020. "Farmers’ perceptions and management of risk in rice/shrimp farming systems in South-West Coastal Bangladesh," Land Use Policy, Elsevier, vol. 95(C).
    6. Kabir, Md. Jahangir & Cramb, Rob & Alauddin, Mohammad & Gaydon, Donald S., 2019. "Farmers’ perceptions and management of risk in rice-based farming systems of south-west coastal Bangladesh," Land Use Policy, Elsevier, vol. 86(C), pages 177-188.
    7. Thayla Sara Soares Stivari Reijers & Gustavo Lineu Sartorello & Oscar Alejandro Ojeda-Rojas & Camila Raineri & Marcos Nogueira & Rodolfo Silva & Thiago Barros Brito & Alda Lucia Gomes Monteiro & Augus, 2019. "Economic Assessment of the Productive Parameters in Meat Sheep Production Using Discrete Event and Agent-Based Simulation," Journal of Agricultural Studies, Macrothink Institute, vol. 7(3), pages 49-69, September.
    8. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    9. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    10. Anna Gaviglio & Mattia Bertocchi & Maria Elena Marescotti & Eugenio Demartini & Alberto Pirani, 2016. "The social pillar of sustainability: a quantitative approach at the farm level," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-19, December.
    11. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    12. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    13. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    14. Epanchin-Niell, Rebecca S. & Thompson, Alexandra & Han, Xianru & Post, Jessica & Miller, Jarrod & Newburn, David & Gedan, Keryn & Tully, Kate, 2023. "Coastal agricultural land use response to sea level rise and saltwater intrusion," 2023 Annual Meeting, July 23-25, Washington D.C. 335970, Agricultural and Applied Economics Association.
    15. Ryschawy, Julie & Tiffany, Sara & Gaudin, Amélie & Niles, Meredith T. & Garrett, Rachael D., 2021. "Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California," Land Use Policy, Elsevier, vol. 109(C).
    16. Shamsheer Haq & Ismet Boz, 2020. "Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2545-2567, March.
    17. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    18. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    19. Song, Yuegang & Zhang, Bicheng & Wang, Jianhua & Kwek, Keh, 2022. "The impact of climate change on China's agricultural green total factor productivity," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    20. Pouria Ataei & Hassan Sadighi & Mohammad Chizari & Enayat Abbasi, 2020. "In-depth content analysis of conservation agriculture training programs in Iran based on sustainability dimensions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7215-7237, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8691-:d:1157412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.