IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v163y2016icp263-274.html
   My bibliography  Save this article

Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India

Author

Listed:
  • Kumar, Mukesh
  • Rajput, T.B.S.
  • Kumar, Rohitashw
  • Patel, Neelam

Abstract

Improved water use efficiency, under drip irrigation is reduce percolation and evaporation losses, and provides for environmentally safer fertilizer application through irrigation water in the vicinity of the root zone. The present study was conducted at Water Technology Centre (WTC), Indian Agricultural Research Institute (IARI), New Delhi, India to investigate the impact of fertigation frequency and system operating pressure on the dynamics of NO3-N in the soil root system of baby corn. The study was conducted during the year 2010–11 for three consecutive seasons consisted of nine treatments which included three system operating pressures (0.5kgcm−2, 1.0kgcm−2 and 1.5kgcm−2) and three fertigation frequencies (biweekly, weekly and fortnightly). Higher NO3-N content was found at surface soil (0–15cm soil depth) in all the treatments. During initial and developmental stages, total applied nitrogen per fertigation was not fully utilized by plants especially in fortnightly fertigation at 1.0kgcm−2 system operating pressure resulting in increase in NO3-N content at 0–30cm soil depth. At maturity stage, when fertigation was over, NO3-N present in 0–30cm soil depth leached up to 45cm soil depth and rest of soil profile remained practically unchanged in its content. NO3-N in lower soil profiles (30–60cm soil depth) was marginally affected in biweekly and weekly fertigation frequency schedule. Fluctuations of NO3-N content at all the depths were more in fortnightly fertigation frequency schedule. Yield attributes of baby corn were significantly affected by fertigation at different system operating pressures.

Suggested Citation

  • Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.
  • Handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:263-274
    DOI: 10.1016/j.agwat.2015.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santos, D. V. & Sousa, P. L. & Smith, R. E., 1997. "Model simulation of water and nitrate movement in a level-basin under fertigation treatments," Agricultural Water Management, Elsevier, vol. 32(3), pages 293-306, March.
    2. Tiwari, K. N. & Mal, P. K. & Singh, R. M. & Chattopadhyay, A., 1998. "Response of okra (Abelmoschus esculentus (L.) Moench.) to drip irrigation under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 38(2), pages 91-102, December.
    3. Ah Koon, P. D. & Gregory, P. J. & Bell, J. P., 1990. "Influence of drip irrigation emission rate on distribution and drainage of water beneath a sugar cane and a fallow plot," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 267-282, January.
    4. Rajput, T.B.S. & Patel, Neelam, 2006. "Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments," Agricultural Water Management, Elsevier, vol. 79(3), pages 293-311, February.
    5. Li, Jiusheng & Zhang, Jianjun & Rao, Minjie, 2004. "Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source," Agricultural Water Management, Elsevier, vol. 67(2), pages 89-104, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sigua, G.C. & Stone, K.C. & Bauer, P.J. & Szogi, A.A. & Shumaker, P.D., 2017. "Impacts of irrigation scheduling on pore water nitrate and phosphate in coastal plain region of the United States," Agricultural Water Management, Elsevier, vol. 186(C), pages 75-85.
    2. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    3. Guangzhao Sun & Yilin Li & Xiaogang Liu & Ningbo Cui & Yanli Gao & Qiliang Yang, 2019. "Effect of Moistube Fertigation on Infiltration and Distribution of Water-Fertilizer in Mixing Waste Biomass Soil," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    4. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    2. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    3. Głąb, Tomasz & Szewczyk, Wojciech & Gondek, Krzysztof & Mierzwa-Hersztek, Monika & Palmowska, Joanna & Nęcka, Krzysztof, 2020. "Optimization of turfgrass fertigation rate and frequency," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    5. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    6. Tsay, T. S. & Huang, C. C., 2003. "Simulation and analysis of drip irrigation infiltration," IWMI Books, Reports H033383, International Water Management Institute.
    7. Gerçek, Sinan & Boydak, Erkan & Okant, Mustafa & Dikilitas, Murat, 2009. "Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 96(1), pages 87-92, January.
    8. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    9. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    10. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    11. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    12. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    13. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    14. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    16. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.
    17. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    18. Patil, Tejaswini & Singh, Man & Khanna, Manoj & Singh, D.K. & Hasan, Murtuza, 2013. "Response of Lettuce (Lactuca sativa L.) to Trickle Irrigation under Different Irrigation Intervals, N Application Rate and Crop Geometry," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(4), pages 1-10.
    19. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    20. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).

    More about this item

    Keywords

    Drip irrigation; Water and N management; NO3-N dynamics;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:263-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.