IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp200-211.html
   My bibliography  Save this article

Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China

Author

Listed:
  • Wu, Dali
  • Xu, Xinxing
  • Chen, Yanling
  • Shao, Hui
  • Sokolowski, Eldad
  • Mi, Guohua

Abstract

Maize growth in Northeast China is suffering from climate change (seasonal drought, cold springs) and low nutrient use efficiency caused by one-time fertilization. Drip fertigation is widely used in vegetable and fruit plant production, yet an efficient, practicable and cost-effective drip fertigation system is lacking for maize production. A two-year field experiment was conducted to evaluate the potential of different drip fertigation methods for increasing maize yield, and water and nutrient use efficiency in sandy and clay soil. Five irrigation methods were applied in each soil: conventional (rain-fed, CK), drip irrigation (DI), surface drip fertigation (SDF), fertigation plus plastic film mulching (SDFP), and subsurface fertigation (SSDF). Compared with rain-fed method (CK), water optimization by DI increased grain yield by (28% in sandy soil and 12% in clay soil), partial fertilizer productivity (PFP) and nitrogen (N), phosphorus (P) and potassium (K) uptake, without effect on water productivity (WP) in both soils. The optimization of both water and nutrient management by SDF increased grain yield by (41% in sandy soil and 17% in clay soil), PFP and NPK uptake, at greater extent than DI. Furthermore, SDF also increased the water productivity in both soils. Compared with DI, SDF increased post-silking N in both soil, and K accumulation in sandy soil. There was no significant difference in yield and PFP between SDF, SSDF and SDFP methods in both soils. In sandy soil, the net profit of DI, SDF, SSDF and SDFP was 13%, 28%, 31% and 10% higher than that of CK, respectively. In clay soil, However, No obvious advantage in net income was found in either DI or fertigation treatments. SDF and SSDF are recommended to increase maize yield, water and nutrient use efficiency, as well as economic benefit synchronously in sandy soil.

Suggested Citation

  • Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:200-211
    DOI: 10.1016/j.agwat.2018.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418316111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    2. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    3. Lekakis, E.H. & Georgiou, P.E. & Pavlatou-Ve, A. & Antonopoulos, V.Z., 2011. "Effects of fixed partial root-zone drying irrigation and soil texture on water and solute dynamics in calcareous soils and corn yield," Agricultural Water Management, Elsevier, vol. 101(1), pages 71-80.
    4. Rajput, T.B.S. & Patel, Neelam, 2006. "Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments," Agricultural Water Management, Elsevier, vol. 79(3), pages 293-311, February.
    5. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    6. Wan, Shuqin & Jiao, Yanping & Kang, Yaohu & Hu, Wei & Jiang, Shufang & Tan, Junli & Liu, Wei, 2012. "Drip irrigation of waxy corn (Zea mays L. var. ceratina Kulesh) for production in highly saline conditions," Agricultural Water Management, Elsevier, vol. 104(C), pages 210-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Lu, Junsheng & Hu, Tiantian & Zhang, Baocheng & Wang, Li & Yang, Shuohuan & Fan, Junliang & Yan, Shicheng & Zhang, Fucang, 2021. "Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Głąb, Tomasz & Szewczyk, Wojciech & Gondek, Krzysztof & Mierzwa-Hersztek, Monika & Palmowska, Joanna & Nęcka, Krzysztof, 2020. "Optimization of turfgrass fertigation rate and frequency," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Lei Wang & Baizhao Ren & Bin Zhao & Peng Liu & Jiwang Zhang, 2022. "Comparative Yield and Photosynthetic Characteristics of Two Corn ( Zea mays L.) Hybrids Differing in Maturity under Different Irrigation Treatments," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    5. Xinbing Wang & Yuxin Miao & Rui Dong & Zhichao Chen & Yanjie Guan & Xuezhi Yue & Zheng Fang & David J. Mulla, 2019. "Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    6. Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Dejan Simić & Borivoj Pejić & Goran Bekavac & Ksenija Mačkić & Bojan Vojnov & Ivana Bajić & Vladimir Sikora, 2023. "Effect of Different ET-Based Irrigation Scheduling on Grain Yield and Water Use Efficiency of Drip Irrigated Maize," Agriculture, MDPI, vol. 13(10), pages 1-21, October.
    8. Li, Yue & Huang, Guanhua & Chen, Zhijun & Xiong, Yuwu & Huang, Quanzhong & Xu, Xu & Huo, Zailin, 2022. "Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    11. Patra, Kiranmoy & Parihar, C.M. & Nayak, H.S. & Rana, Biswajit & Sena, D.R. & Anand, Anjali & Reddy, K. Srikanth & Chowdhury, Manojit & Pandey, Renu & Kumar, Atul & Singh, L.K. & Ghatala, M.K. & Sidhu, 2023. "Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Mo, Yan & Li, Guangyong & Wang, Dan & Lamm, Freddie R. & Wang, Jiandong & Zhang, Yanqun & Cai, Mingkun & Gong, Shihong, 2020. "Planting and preemergence irrigation procedures to enhance germination of subsurface drip irrigated corn," Agricultural Water Management, Elsevier, vol. 242(C).
    13. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Li, Yuepeng & Tang, Zijun & Li, Zhijun, 2022. "Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Kaili Shi & Lili Zhangzhong & Furong Han & Shirui Zhang & Rui Guo & Xueying Yao, 2023. "Reducing Emitter Clogging in Drip Fertigation Systems by Magnetization Technology," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    15. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    2. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    4. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    5. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    6. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
    7. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    8. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    9. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    10. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    11. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    12. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
    13. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    14. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    16. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    17. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    18. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    19. Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.
    20. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:200-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.