IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i4p597-605.html
   My bibliography  Save this article

Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment

Author

Listed:
  • Ünlü, Mustafa
  • Kanber, RIza
  • Koç, D. Levent
  • Tekin, Servet
  • Kapur, Burçak

Abstract

A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha-1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha-1 mm-1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha-1 mm-1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg-1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.

Suggested Citation

  • Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:597-605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00349-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    2. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    3. Ertek, Ahmet & Kanber, Riza, 2003. "Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton," Agricultural Water Management, Elsevier, vol. 60(1), pages 1-11, April.
    4. Wanjura, Donald F. & Upchurch, Dan R. & Mahan, James R. & Burke, John J., 2002. "Cotton yield and applied water relationships under drip irrigation," Agricultural Water Management, Elsevier, vol. 55(3), pages 217-237, June.
    5. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    6. Jalota, S.K. & Sood, Anil & Chahal, G.B.S. & Choudhury, B.U., 2006. "Crop water productivity of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 137-146, July.
    7. Aujla, M.S. & Thind, H.S. & Buttar, G.S., 2005. "Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting," Agricultural Water Management, Elsevier, vol. 71(2), pages 167-179, February.
    8. Yazar, Attila & Sezen, S. Metin & Sesveren, Sertan, 2002. "LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey," Agricultural Water Management, Elsevier, vol. 54(3), pages 189-203, April.
    9. Cetin, O. & Bilgel, L., 2002. "Effects of different irrigation methods on shedding and yield of cotton," Agricultural Water Management, Elsevier, vol. 54(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    3. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Janez Sušnik & Jose-Luis Molina & Lydia Vamvakeridou-Lyroudia & Dragan Savić & Zoran Kapelan, 2013. "Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 819-841, February.
    6. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    9. Wang, Han & Xiang, Youzhen & Zhang, Fucang & Tang, Zijun & Guo, Jinjin & Zhang, Xueyan & Hou, Xianghao & Wang, Haidong & Cheng, Minghui & Li, Zhijun, 2022. "Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    11. Eleni Tsaliki & Romain Loison & Apostolos Kalivas & Ioannis Panoras & Ioannis Grigoriadis & Abdou Traore & Jean-Paul Gourlot, 2023. "Cotton Cultivation in Greece under Sustainable Utilization of Inputs," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    12. Khozaei, Maryam & Kamgar Haghighi, Ali Akbar & Zand Parsa, Shahrokh & Sepaskhah, Ali Reza & Razzaghi, Fatemeh & Yousefabadi, Vali-allah & Emam, Yahya, 2020. "Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    14. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    15. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    16. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    17. Hou, Xianghao & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Wenhui & Yan, Fulai & Guo, Jinjin & Xiao, Chao & Li, Yuepeng & Cheng, Houliang & Li, Zhijun, 2021. "Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Jiang, Chuangdao & Zhang, Yali & Zhang, Wangfeng, 2021. "Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    4. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    6. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    7. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    8. Pereira, L.S. & Paredes, P. & Sholpankulov, E.D. & Inchenkova, O.P. & Teodoro, P.R. & Horst, M.G., 2009. "Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia," Agricultural Water Management, Elsevier, vol. 96(5), pages 723-735, May.
    9. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    11. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    12. DeTar, W.R., 2008. "Yield and growth characteristics for cotton under various irrigation regimes on sandy soil," Agricultural Water Management, Elsevier, vol. 95(1), pages 69-76, January.
    13. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    15. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    16. Blessing Masasi & Saleh Taghvaeian & Randy Boman & Sumon Datta, 2019. "Impacts of Irrigation Termination Date on Cotton Yield and Irrigation Requirement," Agriculture, MDPI, vol. 9(2), pages 1-15, February.
    17. Thind, H.S. & Aujla, M.S. & Buttar, G.S., 2008. "Response of cotton to various levels of nitrogen and water applied to normal and paired sown cotton under drip irrigation in relation to check-basin," Agricultural Water Management, Elsevier, vol. 95(1), pages 25-34, January.
    18. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    19. Ko, Jonghan & Piccinni, Giovanni, 2009. "Corn yield responses under crop evapotranspiration-based irrigation management," Agricultural Water Management, Elsevier, vol. 96(5), pages 799-808, May.
    20. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:597-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.