IDEAS home Printed from https://ideas.repec.org/a/ags/inijae/206356.html
   My bibliography  Save this article

Response of Lettuce (Lactuca sativa L.) to Trickle Irrigation under Different Irrigation Intervals, N Application Rate and Crop Geometry

Author

Listed:
  • Patil, Tejaswini
  • Singh, Man
  • Khanna, Manoj
  • Singh, D.K.
  • Hasan, Murtuza

Abstract

Field experiments were conducted on the sandy loam soils of Center for Protected Cultivation Technology (CPCT), Indian Agricultural Research Institute (IARI), New Delhi, India during October - February seasons for 2 years (2008-2010) to evaluate the economic feasibility of trickle irrigation in combination with different irrigation intervals, N application rate and crop geometry for lettuce crop. Reference evapo-transpiration for lettuce crop was estimated using FAO-56 Penman-Monteith method. The net irrigation volume (V) was determined after deducting the effective rainfall. The plan of experiment included three crop geometries [45×30 (G1); 30×30 (G2) and 17.5×30 (G3) (Row × Plant spacing in cm)], two irrigation schedules [2 day (I1) and 4 day (I2) interval] and 2 levels of nitrogen application [60 kg ha-1 (N1) and 100 kg ha-1 (N2)]. For both the experiments, three replications were given. The study indicated that 2 day irrigation interval with 100 kg N ha-1 application in 17.5 × 30cm crop geometry gave the highest yield (41.4 t ha-1) with 6 per cent increase in yield as compared to rest of the treatments. The same treatment has resulted into maximum net seasonal income, benefit-cost ratio (BCR) and lowest payback period for both the years, respectively.

Suggested Citation

  • Patil, Tejaswini & Singh, Man & Khanna, Manoj & Singh, D.K. & Hasan, Murtuza, 2013. "Response of Lettuce (Lactuca sativa L.) to Trickle Irrigation under Different Irrigation Intervals, N Application Rate and Crop Geometry," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(4), pages 1-10.
  • Handle: RePEc:ags:inijae:206356
    DOI: 10.22004/ag.econ.206356
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/206356/files/Patil68_4.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.206356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tiwari, K. N. & Mal, P. K. & Singh, R. M. & Chattopadhyay, A., 1998. "Response of okra (Abelmoschus esculentus (L.) Moench.) to drip irrigation under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 38(2), pages 91-102, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsay, T. S. & Huang, C. C., 2003. "Simulation and analysis of drip irrigation infiltration," IWMI Books, Reports H033383, International Water Management Institute.
    2. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Gerçek, Sinan & Boydak, Erkan & Okant, Mustafa & Dikilitas, Murat, 2009. "Water pillow irrigation compared to furrow irrigation for soybean production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 96(1), pages 87-92, January.
    4. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    5. Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.
    6. Tiwari, K. N. & Singh, Ajai & Mal, P. K., 2003. "Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions," Agricultural Water Management, Elsevier, vol. 58(1), pages 19-28, January.
    7. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    8. S. Alan Walters & Ajay K. Jha, 2016. "Sustaining Chili Pepper Production in Afghanistan through Better Irrigation Practices and Management," Agriculture, MDPI, vol. 6(4), pages 1-10, November.
    9. Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
    10. C. Xu & D.I. Leskovar, 2014. "Growth, physiology and yield responses of cabbage to deficit irrigation," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 41(3), pages 138-146.
    11. Gerçek, Sinan & Demirkaya, Mustafa & Işik, Doğan, 2017. "Water pillow irrigation versus drip irrigation with regard to growth and yield of tomato grown under greenhouse conditions in a semi-arid region," Agricultural Water Management, Elsevier, vol. 180(PA), pages 172-177.
    12. Islam, Md. Serazul & Pervin, Shahnaj & Haque, Md Anowarul, 2022. "Effects Of Irrigation And Soil Mulching In Different Growing Environments On Strawberry Yield And Quality," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(2), April.
    13. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    14. Al-Omran, A.M. & Sheta, A.S. & Falatah, A.M. & Al-Harbi, A.R., 2005. "Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits," Agricultural Water Management, Elsevier, vol. 73(1), pages 43-55, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:inijae:206356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/isaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.