IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v100y2011i1p36-45.html
   My bibliography  Save this article

Impact of upstream changes in rain-fed agriculture on downstream flow in a semi-arid basin

Author

Listed:
  • Masih, I.
  • Maskey, S.
  • Uhlenbrook, S.
  • Smakhtin, V.

Abstract

The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Karkheh Basin, Iran are simulated using the semi-distributed SWAT model. Three scenarios are tested at subbasin and basin levels: converting rain-fed areas to irrigation agriculture (S1), improving soil water availability through rainwater harvesting (S2), and a combination of both (S3). The results of these scenarios were compared against the baseline period 1988–2000. The S1 scenario shows a 10% reduction in mean annual flow at the basin level, varying from 8–15% across the subbasins. The reductions in mean monthly flows are in the range of 1–56% at the basin level, with June witnessing the highest flow reduction. Flow reductions are comparatively higher in the upstream parts of the basin, as a result of a relatively higher potential of developing rain-fed areas coupled with comparatively lower amount of available runoff. The impacts of S2 are generally small with reductions of 2–5% and 1–9% in mean annual and mean monthly flows, respectively. The results of S3 are in general similar to those of S1. Although the estimated annual flow reductions remain well within the available water resources development potential, measures needs to be taken to avoid excessive flow reductions in May, June and July. It is recommended that only a limited agricultural area should be converted from rain-fed to irrigated agriculture (about 0.1 million ha), and should practice supplementary irrigation. The supplies should also be augmented through developing additional water storage. Adopting such measures is extremely important for the upper subbasins Gamasiab and Qarasou where comparatively higher flow reductions were estimated.

Suggested Citation

  • Masih, I. & Maskey, S. & Uhlenbrook, S. & Smakhtin, V., 2011. "Impact of upstream changes in rain-fed agriculture on downstream flow in a semi-arid basin," Agricultural Water Management, Elsevier, vol. 100(1), pages 36-45.
  • Handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:36-45
    DOI: 10.1016/j.agwat.2011.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oweis, T. & Hachum, A., 2009. "Water harvesting for improved rainfed agriculture in the dry environments," IWMI Books, Reports H041998, International Water Management Institute.
    2. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    3. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    4. McCartney, Matthew & Smakhtin, Vladimir, 2010. "Water storage in an era of climate change: addressing the challenge of increasing rainfall variability. Blue paper," IWMI Research Reports H043122, International Water Management Institute.
    5. McCartney, Matthew & Smakhtin, Vladimir, 2010. "Water storage in an era of climate change: addressing the challenge of increasing rainfall variability. Blue paper," IWMI Reports 212430, International Water Management Institute.
    6. Wani, S. P. & Rockstrom, J. & Oweis, T., 2009. "Rainfed agriculture: unlocking the potential," IWMI Books, Reports H042126, International Water Management Institute.
    7. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    8. Wani, S. P. & Rockstrom, J. & Oweis, T., 2009. "Rainfed agriculture: unlocking the potential," IWMI Books, Reports H041989, International Water Management Institute.
    9. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.
    10. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    11. I. Masih & S. Uhlenbrook & S. Maskey & V. Smakhtin, 2011. "Streamflow trends and climate linkages in the Zagros Mountains, Iran," Climatic Change, Springer, vol. 104(2), pages 317-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Wang & Xinliang Liu & Yantai Gan & Yong Li & Ying Zhao, 2023. "Conversion of Forest Hillslopes into Tea Fields Increases Soil Nutrient Losses through Surface Runoff," Land, MDPI, vol. 12(2), pages 1-14, February.
    2. Rajesh Nune & Biju George & Pardhasaradhi Teluguntla & Andrew Western, 2014. "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1579-1595, April.
    3. Wambura, Frank Joseph & Dietrich, Ottfried & Graef, Frieder, 2018. "Analysis of infield rainwater harvesting and land use change impacts on the hydrologic cycle in the Wami River basin," Agricultural Water Management, Elsevier, vol. 203(C), pages 124-137.
    4. Prem B. Parajuli & Priyantha Jayakody & Ying Ouyang, 2018. "Evaluation of Using Remote Sensing Evapotranspiration Data in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 985-996, February.
    5. Parajuli, P.B. & Jayakody, P. & Sassenrath, G.F. & Ouyang, Y., 2016. "Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin," Agricultural Water Management, Elsevier, vol. 168(C), pages 112-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    2. Johnston, Robyn & Hoanh, Chu Thai & Lacombe, Guillaume & Lefroy, R. & Pavelic, Paul & Fry, Carolyn., 2012. "Managing water in rainfed agriculture in the Greater Mekong Subregion. Final report prepared by IWMI for Swedish International Development Cooperation Agency (Sida)," IWMI Research Reports H044646, International Water Management Institute.
    3. Getnet, Kindie & MacAlister, Charlotte, 2012. "Integrated innovations and recommendation domains: Paradigm for developing, scaling-out, and targeting rainwater management innovations," Ecological Economics, Elsevier, vol. 76(C), pages 34-41.
    4. Birhanu Zemadim Birhanu & Kalifa Traoré & Murali Krishna Gumma & Félix Badolo & Ramadjita Tabo & Anthony Michael Whitbread, 2019. "A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2459-2485, October.
    5. Ayyad, Saher & Karimi, Poolad & Langensiepen, Matthias & Ribbe, Lars & Rebelo, Lisa-Maria & Becker, Mathias, 2022. "Remote sensing assessment of available green water to increase crop production in seasonal floodplain wetlands of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Saudamini Das, "undated". "Evaluating the Role of Media in Averting Heat Stroke Mortality: A Daily Panel Data Analysis," Working papers 102, The South Asian Network for Development and Environmental Economics.
    7. Getnet, Kindie & Pfeifer, Catherine & MacAlister, Charlotte, 2014. "Economic incentives and natural resource management among small-scale farmers: Addressing the missing link," Ecological Economics, Elsevier, vol. 108(C), pages 1-7.
    8. Zongo, Beteo & Diarra, Abdoulaye & Barbier, Bruno & Zorom, Malicki & Yacouba, Hamma & Dogot, Thomas, 2015. "Farmers’ Practices And Willingness To Adopt Supplemental Irrigation In Burkina Faso," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(1), pages 1-17, January.
    9. Sassi, Maria & Cardaci, Alberto, 2013. "Impact of rainfall pattern on cereal market and food security in Sudan: Stochastic approach and CGE model," Food Policy, Elsevier, vol. 43(C), pages 321-331.
    10. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    11. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    12. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    13. World Bank, 2012. "Uganda : Country Environmental Analysis," World Bank Publications - Reports 12407, The World Bank Group.
    14. Eriyagama, Nishadi & Smakhtin, V. & Udamulla, L., 2021. "Sustainable surface water storage development pathways and acceptable limits for river basins," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(5):645.
    15. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    16. Sekyi-Annan, Ephraim & Tischbein, Bernhard & Diekkrüger, Bernd & Khamzina, Asia, 2018. "Performance evaluation of reservoir-based irrigation schemes in the Upper East region of Ghana," Agricultural Water Management, Elsevier, vol. 202(C), pages 134-145.
    17. Villholth, Karen, 2015. "Groundwater for food production and livelihoods - the nexus with climate change and transboundary water management," Book Chapters,, International Water Management Institute.
    18. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    19. Boelee, Eline & Scherr, S. J. & Pert, P. L. & Barron, J. & Finlayson, M. & Descheemaeker, K. & Milder, J. C. & Fleiner, R. & Nguyen-Khoa, S. & Barchiesi, S. & Bunting, S. W. & Tharme, R. E. & Khaka, E, 2013. "Management of water and agroecosystems in landscapes for sustainable food security," Book Chapters,, International Water Management Institute.
    20. Asfaw, Solomon & Scognamillo, Antonio & Caprera, Gloria Di & Sitko, Nicholas & Ignaciuk, Adriana, 2019. "Heterogeneous impact of livelihood diversification on household welfare: Cross-country evidence from Sub-Saharan Africa," World Development, Elsevier, vol. 117(C), pages 278-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:100:y:2011:i:1:p:36-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.