IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v195y2022ics0308521x21002602.html
   My bibliography  Save this article

Simulating grazing beef and sheep systems

Author

Listed:
  • Wu, L.
  • Harris, P.
  • Misselbrook, T.H.
  • Lee, M.R.F.

Abstract

Ruminant livestock make an important contribution to global food security by converting feed that is unsuitable for human consumption into high value food protein, demand for which is currently increasing at an unprecedented rate because of increasing global population and income levels. Factors affecting production efficiency, product quality, and consumer acceptability, such as animal fertility, health and welfare, will ultimately define the sustainability of ruminant production systems. These more complex systems can be developed and analysed by using models that can predict system responses to environment and management.

Suggested Citation

  • Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:agisys:v:195:y:2022:i:c:s0308521x21002602
    DOI: 10.1016/j.agsy.2021.103307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21002602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donnelly, J. R. & Freer, M. & Salmon, L. & Moore, A. D. & Simpson, R. J. & Dove, H. & Bolger, T. P., 2002. "Evolution of the GRAZPLAN decision support tools and adoption by the grazing industry in temperate Australia," Agricultural Systems, Elsevier, vol. 74(1), pages 115-139, October.
    2. Mark C. Eisler & Michael R. F. Lee & John F. Tarlton & Graeme B. Martin & John Beddington & Jennifer A. J. Dungait & Henry Greathead & Jianxin Liu & Stephen Mathew & Helen Miller & Tom Misselbrook & P, 2014. "Agriculture: Steps to sustainable livestock," Nature, Nature, vol. 507(7490), pages 32-34, March.
    3. Wu, L. & McGechan, M.B. & McRoberts, N. & Baddeley, J.A. & Watson, C.A., 2007. "SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description," Ecological Modelling, Elsevier, vol. 200(3), pages 343-359.
    4. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    5. Bryant, J.R. & Snow, V.O. & Cichota, R. & Jolly, B.H., 2011. "The effect of situational variability in climate and soil, choice of animal type and N fertilisation level on nitrogen leaching from pastoral farming systems around Lake Taupo, New Zealand," Agricultural Systems, Elsevier, vol. 104(3), pages 271-280, March.
    6. Loewer, Otto J. & Smith, Edward M. & Gay, Nelson & Fehr, Robert, 1983. "Incorporation of environment and feed quality into a net energy model for beef cattle," Agricultural Systems, Elsevier, vol. 11(2), pages 67-94.
    7. Hulme, D. J. & Kellaway, R. C. & Booth, P. J. & Bennett, L., 1986. "The CAMDAIRY model for formulating and analysing dairy cow rations," Agricultural Systems, Elsevier, vol. 22(2), pages 81-108.
    8. Kahn, Hava E. & Spedding, C. R. W., 1984. "A dynamic model for the simulation of cattle herd production systems: 2-An investigation of various factors influencing the voluntary intake of dry matter and the use of the model in their validation," Agricultural Systems, Elsevier, vol. 13(2), pages 63-82.
    9. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Chuang Liu & Huiyi Yang & Kate Gongadze & Paul Harris & Mingbin Huang & Lianhai Wu, 2022. "Climate Change Impacts on Crop Yield of Winter Wheat ( Triticum aestivum ) and Maize ( Zea mays ) and Soil Organic Carbon Stocks in Northern China," Agriculture, MDPI, vol. 12(5), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Topp, Cairistiona F. E. & Doyle, Christopher J., 1996. "Simulating the impact of global warming on milk and forage production in Scotland: 2. The effects on milk yields and grazing management of dairy herds," Agricultural Systems, Elsevier, vol. 52(2-3), pages 243-270.
    2. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    3. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    4. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Agyapong, Nana Ama & Annan, Reginald A. & Apprey, Charles & Aryeetey, Richmond, 2022. "A review of Ghana’s food system and its implications on sustainability and the development of national food-based dietary guidelines," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(02).
    6. Louis-Georges Soler & Alban Thomas, 2020. "Is there a win–win scenario with increased beef quality and reduced consumption?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 91-116, October.
    7. Yu, Wusheng & Clora, Francesco & Costa, Louis & Baudry, Gino, 2021. "Dietary Transitions As Climate Mitigation Measures in Europe: Implications of Supply-Side Responses and Trade Policy Regimes," 2021 Conference, August 17-31, 2021, Virtual 315912, International Association of Agricultural Economists.
    8. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    9. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    10. Nicholas M. Short & M. Jennifer Woodward-Greene & Michael D. Buser & Daniel P. Roberts, 2023. "Scalable Knowledge Management to Meet Global 21st Century Challenges in Agriculture," Land, MDPI, vol. 12(3), pages 1-19, February.
    11. Confidence Duku & Carlos Alho & Rik Leemans & Annemarie Groot, 2022. "IFAD Research Series 72: Climate change and food system activities - a review of emission trends, climate impacts and the effects of dietary change," IFAD Research Series 320722, International Fund for Agricultural Development (IFAD).
    12. Anne Saint-Eve & Françoise Irlinger & Caroline Pénicaud & Isabelle Souchon & Stéphan Marette, 2021. "Consumer preferences for new fermented food products that mix animal and plant protein sources [Les préférences des consommateurs pour de nouveaux produits alimentaires fermentés qui mélangent des ," Post-Print hal-03908155, HAL.
    13. Bowles, Nicholas & Alexander, Samuel & Hadjikakou, Michalis, 2019. "The livestock sector and planetary boundaries: A ‘limits to growth’ perspective with dietary implications," Ecological Economics, Elsevier, vol. 160(C), pages 128-136.
    14. Sandra Boatemaa Kushitor & Scott Drimie & Rashieda Davids & Casey Delport & Corinna Hawkes & Tafadzwanashe Mabhaudhi & Mjabuliseni Ngidi & Rob Slotow & Laura M. Pereira, 2022. "The complex challenge of governing food systems: The case of South African food policy," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(4), pages 883-896, August.
    15. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    16. Daniel Magnone & Vahid J. Niasar & Alexander F. Bouwman & Arthur H. W. Beusen & Sjoerd E. A. T. M. Zee & Sheida Z. Sattari, 2022. "The impact of phosphorus on projected Sub-Saharan Africa food security futures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. María-José Ibarrola-Rivas & Sanderine Nonhebel, 2022. "Regional food preferences influence environmental impacts of diets," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(4), pages 1063-1083, August.
    18. M. J. Milán & E. González, 2023. "Beef–cattle ranching in the Paraguayan Chaco: typological approach to a livestock frontier," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5185-5210, June.
    19. Vermunt, D.A. & Wojtynia, N. & Hekkert, M.P. & Van Dijk, J. & Verburg, R. & Verweij, P.A. & Wassen, M. & Runhaar, H., 2022. "Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: A systemic analysis of Dutch dairy farming," Agricultural Systems, Elsevier, vol. 195(C).
    20. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:195:y:2022:i:c:s0308521x21002602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.