IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v184y2020ics0308521x20307757.html
   My bibliography  Save this article

Smallholder mechanization induced by yield-enhancing biological technologies: Evidence from Nepal and Ghana

Author

Listed:
  • Takeshima, Hiroyuki
  • Liu, Yanyan

Abstract

Recent agricultural transformation in Asia and Africa has witnessed the gradual spread of mechanization in agricultural areas that are still largely made up of smallholder farming. While the literature has often characterized mechanical technologies as being complementary to land, knowledge gaps exist with regard to the process of adoption of mechanization by smallholders for whom the scope for exploiting its complementarity with land is limited. We test a hypothesis that yield-enhancing biological technologies—which potentially raise total factor productivity and returns to more intensive farm-power use—are important drivers of the adoption of agricultural mechanization among smallholders. To enhance the external validity of evidence, we empirically analyze this hypothesis by applying the same methodologies in two countries, lowland (Terai) Nepal and Ghana. We employ nationally representative, repeated, cross-sectional data from both countries, as well as unique tractor-use data from Ghana; we also employ multidimensional indicators of agroclimatic similarity in the respective plant breeding locations. We show that in both lowland Nepal and Ghana, the adoption of tractors and agricultural equipment has been induced by yield-enhancing biological technologies, particularly improved varieties and high-yielding production systems, when these biological technologies are instrumented by agroclimatic similarity to plant breeding locations, which is measured accounting for the multidimensional characteristics of agroclimatic conditions, and thus proxies spillover potentials of the public sector developed biological technologies. In general, these effects are particularly strong among smaller farms, and the effect holds for the adoption of mechanization both at extensive margins (whether to adopt) and at intensive margins (how much to adopt). In Ghana, partly due to improved efficiency in supply-side factors of mechanization, these linkages have strengthened in the 2010s. The results suggest that in both countries, mechanization support strategies for smallholders can potentially improve their targeting by utilizing the information of agroclimatic similarity with plant breeding locations. In Ghana, further public investments in plant-breeding system in strategic locations may broadly enhance smallholders' demand for mechanization. In lowland Nepal where tractor adoptions have grown fairly high, it is now important to more carefully evaluate the trade-off between smallholder-based growth strategies and other strategies, for example, promoting scale-expansions of farming, which also involves mechanization.

Suggested Citation

  • Takeshima, Hiroyuki & Liu, Yanyan, 2020. "Smallholder mechanization induced by yield-enhancing biological technologies: Evidence from Nepal and Ghana," Agricultural Systems, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307757
    DOI: 10.1016/j.agsy.2020.102914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
    2. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1577-1606, December.
    3. Kyle Emerick & Alain de Janvry & Elisabeth Sadoulet & Manzoor H. Dar, 2016. "Technological Innovations, Downside Risk, and the Modernization of Agriculture," American Economic Review, American Economic Association, vol. 106(6), pages 1537-1561, June.
    4. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    5. Loizou, Efstratios & Karelakis, Christos & Galanopoulos, Konstantinos & Mattas, Konstadinos, 2019. "The role of agriculture as a development tool for a regional economy," Agricultural Systems, Elsevier, vol. 173(C), pages 482-490.
    6. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    7. Diao, Xinshen & Cossar, Frances & Houssou, Nazaire & Kolavalli, Shashidhara, 2014. "Mechanization in Ghana: Emerging demand, and the search for alternative supply models," Food Policy, Elsevier, vol. 48(C), pages 168-181.
    8. Hiroyuki Takeshima, 2019. "Geography of plant breeding systems, agroclimatic similarity, and agricultural productivity: evidence from Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 67-78, January.
    9. Hiroyuki Takeshima & Yanyan Liu, 2018. "The Role of Plant-Breeding R&D in Tractor Adoption among Smallholders in Asia: Insights from Nepal Terai," Working Papers id:12748, eSocialSciences.
    10. Steven T. Yen, 1993. "Working Wives and Food away from Home: The Box-Cox Double Hurdle Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 884-895.
    11. Lynam, John & Beintema, Nienke M. & Roseboom, Johannes & Badiane, Ousmane, 2016. "Agricultural research in Africa: Investing in future harvests: Synopsis," IFPRI synopses 9780896299757, International Food Policy Research Institute (IFPRI).
    12. Keijiro Otsuka & Yanyan Liu & Futoshi Yamauchi, 2013. "Factor Endowments, Wage Growth, and Changing Food Self-Sufficiency: Evidence from Country-Level Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1252-1258.
    13. Binswanger, Hans, 1986. "Agricultural Mechanization: A Comparative Historical Perspective," The World Bank Research Observer, World Bank, vol. 1(1), pages 27-56, January.
    14. Klaus Deininger & Daniel Monchuk & Hari K Nagarajan & Sudhir K Singh, 2017. "Does Land Fragmentation Increase the Cost of Cultivation? Evidence from India," Journal of Development Studies, Taylor & Francis Journals, vol. 53(1), pages 82-98, January.
    15. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    16. Harris, David & Orr, Alastair, 2014. "Is rainfed agriculture really a pathway from poverty?," Agricultural Systems, Elsevier, vol. 123(C), pages 84-96.
    17. Hiroyuki Takeshima & Hyacinth O. Edeh & Akeem O. Lawal & Moshudi A. Isiaka, 2015. "Characteristics of Private-Sector Tractor Service Provisions: Insights from Nigeria," The Developing Economies, Institute of Developing Economies, vol. 53(3), pages 188-217, September.
    18. Paula Bustos & Bruno Caprettini & Jacopo Ponticelli, 2016. "Agricultural Productivity and Structural Transformation: Evidence from Brazil," American Economic Review, American Economic Association, vol. 106(6), pages 1320-1365, June.
    19. M. Shahe Emran & Zhaoyang Hou, 2013. "Access to Markets and Rural Poverty: Evidence from Household Consumption in China," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 682-697, May.
    20. Diao, Xinshen & Agandin, John & Fang, Peixun & Justice, Scott E. & Kufoalor, Doreen S. & Takeshima, Hiroyuki, 2018. "Agricultural mechanization in Ghana: Insights from a recent field study:," IFPRI discussion papers 1729, International Food Policy Research Institute (IFPRI).
    21. Samuel Bazzi & Arya Gaduh & Alexander D. Rothenberg & Maisy Wong, 2016. "Skill Transferability, Migration, and Development: Evidence from Population Resettlement in Indonesia," American Economic Review, American Economic Association, vol. 106(9), pages 2658-2698, September.
    22. Danielle Resnick, 2018. "The Devolution Revolution: Implications for Agricultural Service Delivery in Ghana," Feed the Future Innovation Lab for Food Security Policy Research Papers 270644, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    23. Douthwaite, B. & Keatinge, J. D. H. & Park, J. R., 2001. "Why promising technologies fail: the neglected role of user innovation during adoption," Research Policy, Elsevier, vol. 30(5), pages 819-836, May.
    24. McArthur, John W. & McCord, Gordon C., 2017. "Fertilizing growth: Agricultural inputs and their effects in economic development," Journal of Development Economics, Elsevier, vol. 127(C), pages 133-152.
    25. Lynam, John & Beintema, Nienke M. & Roseboom, Johannes & Badiane, Ousmane (ed.), 2016. "Agricultural research in Africa: Investing in future harvests," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-212-3.
    26. Pingali, Prabhu, 2007. "Agricultural Mechanization: Adoption Patterns and Economic Impact," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 54, pages 2779-2805, Elsevier.
    27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    28. Van Loon, Jelle & Woltering, Lennart & Krupnik, Timothy J. & Baudron, Frédéric & Boa, Maria & Govaerts, Bram, 2020. "Scaling agricultural mechanization services in smallholder farming systems: Case studies from sub-Saharan Africa, South Asia, and Latin America," Agricultural Systems, Elsevier, vol. 180(C).
    29. Robert Evenson & Prabhu Pingali (ed.), 2007. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 3, number 1.
    30. Takeshima, Hiroyuki & Liu, Yanyan, 2019. "Geography of smallholders’ tractor adoptions and R&D–Induced land productivity: Evidence from household survey data in Ghana:," IFPRI discussion papers 1871, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaoshi & Ma, Wanglin, 2021. "Effects of Agricultural Mechanization on Land Productivity: Evidence from China," 2021 Conference, August 17-31, 2021, Virtual 315143, International Association of Agricultural Economists.
    2. Diwakar KC & Dinesh Jamarkattel & Tek Maraseni & Dilip Nandwani & Pratibha Karki, 2021. "The Effects of Tunnel Technology on Crop Productivity and Livelihood of Smallholder Farmers in Nepal," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    3. Wangda Liao & Fusheng Zeng & Meseret Chanieabate, 2022. "Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery," Sustainability, MDPI, vol. 14(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshima, Hiroyuki & Houssou, Nazaire & Diao, Xinshen, 2018. "Effects of tractor ownership on returns-to-scale in agriculture: Evidence from maize in Ghana," Food Policy, Elsevier, vol. 77(C), pages 33-49.
    2. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).
    3. Kubitza, Christoph & Dib, Jonida Bou & Kopp, Thomas & Krishna, Vijesh V. & Nuryartono, Nunung & Qaim, Matin & Romero, Miriam & Klasen, Stephan, 2019. "Labor savings in agriculture and inequality at different spatial scales: The expansion of oil palm in Indonesia," EFForTS Discussion Paper Series 26, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    4. Yukichi Y. & Mano Yukichi Y. & Takahashi Kazushi & Otsuka Keijiro, 2017. "Contract Farming, Farm Mechanization, and Agricultural Intensification: The Case of Rice Farming in Cote d’Ivoire," Working Papers 157, JICA Research Institute.
    5. Afridi, Farzana & Bishnu, Monisankar & Mahajan, Kanika, 2020. "Gendering Technological Change: Evidence from Agricultural Mechanization," IZA Discussion Papers 13712, Institute of Labor Economics (IZA).
    6. Zhou, Xiaoshi & Ma, Wanglin, 2021. "Effects of Agricultural Mechanization on Land Productivity: Evidence from China," 2021 Conference, August 17-31, 2021, Virtual 315143, International Association of Agricultural Economists.
    7. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Thapa, Ganesh & Simtowe, Franklin, 2021. "Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey," Technology in Society, Elsevier, vol. 65(C).
    8. Yukichi Mano & Kazushi Takahashi & Keijiro Otsuka, 2020. "Mechanization in land preparation and agricultural intensification: The case of rice farming in the Cote d'Ivoire," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 899-908, November.
    9. Daniel Chrisendo & Hermanto Siregar & Matin Qaim, 2021. "Oil palm and structural transformation of agriculture in Indonesia," Agricultural Economics, International Association of Agricultural Economists, vol. 52(5), pages 849-862, September.
    10. Farzana Afridi & Monisankar Bishnu & Kanika Mahajan, 2023. "Gender and mechanization: Evidence from Indian agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 52-75, January.
    11. Hiroyuki Takeshima & Bedru B. Balana & Jenny Smart & Hyacinth O. Edeh & Motunrayo Ayowumi Oyeyemi & Kwaw S. Andam, 2022. "Subnational public expenditures, short‐term household‐level welfare, and economic flexibility: Evidence from Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 739-755, September.
    12. Adu-Baffour, Ferdinand & Daum, Thomas & Birner, Regina, 2019. "Can small farms benefit from big companies’ initiatives to promote mechanization in Africa? A case study from Zambia," Food Policy, Elsevier, vol. 84(C), pages 133-145.
    13. Hiroyuki Takeshima & Rajendra Prasad Adhikari & Anjani Kumar, 2016. "Is Access to Tractor Service a Binding Constraint for Nepali Terai Farmers?," Working Papers id:9604, eSocialSciences.
    14. de Janvry, Alain & Sadoulet, Elisabeth, 2020. "Using agriculture for development: Supply- and demand-side approaches," World Development, Elsevier, vol. 133(C).
    15. Idelphonse O. Saliou & Afio Zannou & Augustin K. N. Aoudji & Albert N. Honlonkou, 2020. "Drivers of Mechanization in Cotton Production in Benin, West Africa," Agriculture, MDPI, vol. 10(11), pages 1-13, November.
    16. Chen, Chaoran, 2020. "Technology adoption, capital deepening, and international productivity differences," Journal of Development Economics, Elsevier, vol. 143(C).
    17. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    18. Zhang, Xiaobo & Yang, Jin & Reardon, Thomas, 2020. "Mechanization outsourcing clusters and division of labor in Chinese agriculture," IFPRI book chapters, in: An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia?, chapter 2, pages 71-96, International Food Policy Research Institute (IFPRI).
    19. Diao, Xinshen & Silver, Jed & Takeshima, Hiroyuki, 2016. "Agricultural mechanization and agricultural transformation:," IFPRI discussion papers 1527, International Food Policy Research Institute (IFPRI).
    20. Thomas Daum & Regina Birner, 2017. "The neglected governance challenges of agricultural mechanisation in Africa – insights from Ghana," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 959-979, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.