IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v146y2016icp142-155.html
   My bibliography  Save this article

Impact of climate changes on existing crop-livestock farming systems

Author

Listed:
  • Ghahramani, Afshin
  • Moore, Andrew D.

Abstract

The state of Western Australia is a major producer and exporter of crops and livestock. Mixed farming systems are typical agricultural enterprises in the Western Australian wheatbelt where climate drives the productivity and profitability of these farms and therefore the effects of likely climate change on their performance need to be understood. Here the effects of climate change projected at 2030 were evaluated compared to a baseline period (1980–1999) on mixed farming systems at paddock, enterprise and whole farm scales using the coupled APSIM and GRAZPLAN biophysical simulation models. The yield of different crops, livestock production and gross margins were assessed under current and projected climates using current farming technology and management practices. Representative mixed-farm systems were selected along a climate transect. Modelling analysis suggests that current production levels and gross margins of mixed farm systems in Western Australia will not be sustained in 2030 climate conditions except in areas of moderately high-rainfall. Whole farm gross margin declined at all site×potential climate scenarios between 1% and 22% except in moderately high rainfall where gross margin increased by up to 4% under a ‘hot and moderate change in rainfall’ climate. Projected crop yields declined for most of the crop×site×potential climate combinations, with greatest declines under a hot and dry climate (at driest margin of transect) in which wheat, barley, canola, and lupin yield declined up to 16%, 15%, 21%, and 27%, respectively. Increase in yield was predicted for wheat and barley at some of the site×potential climate s. Wheat yield increased only under moderately high rainfall region by 6% while barley increased by 1%. Simulated cropping gross margin was also shown to decline by between >1% and 23%, except for the moderately high-rainfall site where cropping gross margins were projected to increase by up to 3%. Changes in simulated livestock production were smaller and less variable than for crop production. The change in weight of livestock sold across sites×potential climate combinations ranged between −3% and +3%. Livestock gross margin varied between −11% and +6%. Modelling results indicated a greater fertilisation effect of the elevated CO2 on pasture production than on crop yield and biomass particularly in drier sites. But however, this could not offset negative impact of climate change under hot potential climates. The main negative environmental impacts from the projected climate change were declines in annual net primary production (ANPP), ground cover and water use efficiency mostly at drier sites. Whole farm N2O emission declined significantly for the majority of site×potential climate combinations, while smaller decreases in ruminant CH4 emission were predicted. In 2030, returns from livestock enterprises are predicted to be smaller, but less variable than from cropping and with increasing probability of success in drier regions. Reduced variability in financial return is important from the perspective of whole farm risk management. Shifts in enterprise mix in dryland mixed-farming systems towards increased livestock may be a helpful strategy in adapting to climate change and managing the associated financial risks.

Suggested Citation

  • Ghahramani, Afshin & Moore, Andrew D., 2016. "Impact of climate changes on existing crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 146(C), pages 142-155.
  • Handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:142-155
    DOI: 10.1016/j.agsy.2016.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16301433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donnelly, J. R. & Freer, M. & Salmon, L. & Moore, A. D. & Simpson, R. J. & Dove, H. & Bolger, T. P., 2002. "Evolution of the GRAZPLAN decision support tools and adoption by the grazing industry in temperate Australia," Agricultural Systems, Elsevier, vol. 74(1), pages 115-139, October.
    2. Rodriguez, Daniel & Cox, Howard & deVoil, Peter & Power, Brendan, 2014. "A participatory whole farm modelling approach to understand impacts and increase preparedness to climate change in Australia," Agricultural Systems, Elsevier, vol. 126(C), pages 50-61.
    3. Yu Sheng & Shiji Zhao & Katarina Nossal & Dandan Zhang, 2015. "Productivity and farm size in Australian agriculture: reinvestigating the returns to scale," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 16-38, January.
    4. Ghahramani, Afshin & Moore, Andrew D., 2015. "Systemic adaptations to climate change in southern Australian grasslands and livestock: Production, profitability, methane emission and ecosystem function," Agricultural Systems, Elsevier, vol. 133(C), pages 158-166.
    5. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    6. Jonghan Ko & Lajpat Ahuja & S. Saseendran & Timothy Green & Liwang Ma & David Nielsen & Charles Walthall, 2012. "Climate change impacts on dryland cropping systems in the Central Great Plains, USA," Climatic Change, Springer, vol. 111(2), pages 445-472, March.
    7. Moore, A.D. & Robertson, M.J. & Routley, R., 2011. "Evaluation of the water use efficiency of alternative farm practices at a range of spatial and temporal scales: A conceptual framework and a modelling approach," Agricultural Systems, Elsevier, vol. 104(2), pages 162-174, February.
    8. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    9. Thomas J. Wilbanks, 2003. "Integrating climate change and sustainable development in a place-based context," Climate Policy, Taylor & Francis Journals, vol. 3(sup1), pages 147-154, November.
    10. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    11. Keyzer, M.A. & Merbis, M.D. & Pavel, I.F.P.W. & van Wesenbeeck, C.F.A., 2005. "Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030?," Ecological Economics, Elsevier, vol. 55(2), pages 187-202, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghahramani, Afshin & Bowran, David, 2018. "Transformative and systemic climate change adaptations in mixed crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 164(C), pages 236-251.
    2. Ghahramani, Afshin & Kingwell, Ross S. & Maraseni, Tek Narayan, 2020. "Land use change in Australian mixed crop-livestock systems as a transformative climate change adaptation," Agricultural Systems, Elsevier, vol. 180(C).
    3. Naomi di Santo & Ilaria Russo & Roberta Sisto, 2022. "Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming," Land, MDPI, vol. 11(12), pages 1-25, November.
    4. João Marcelo Pereira Ribeiro & Issa Ibrahim Berchin & Samara da Silva Neiva & Thiago Soares & Celso Lopes de Albuquerque Junior & André Borchardt Deggau & Wellyngton Silva de Amorim & Samuel Borges Ba, 2021. "Food stability model: A framework to support decision‐making in a context of climate change," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 13-24, January.
    5. Neal Hughes & Michael Lu & Wei Ying Soh & Kenton Lawson, 2022. "Modelling the effects of climate change on the profitability of Australian farms," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    6. Toro-Mujica, Paula & Vera, Raúl & Pinedo, Pablo & Bas, Fernando & Enríquez-Hidalgo, Daniel & Vargas-Bello-Pérez, Einar, 2020. "Adaptation strategies based on the historical evolution for dairy production systems in temperate areas: A case study approach," Agricultural Systems, Elsevier, vol. 182(C).
    7. Afshin Ghahramani & S. Mark Howden & Agustin del Prado & Dean T. Thomas & Andrew D. Moore & Boyu Ji & Serkan Ates, 2019. "Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
    8. Walter Leal Filho & Franziska Wolf & Stefano Moncada & Amanda Lange Salvia & Abdul-Lateef Babatunde Balogun & Constantina Skanavis & Aristea Kounani & Patrick D. Nunn, 2022. "Transformative adaptation as a sustainable response to climate change: insights from large-scale case studies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghahramani, Afshin & Bowran, David, 2018. "Transformative and systemic climate change adaptations in mixed crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 164(C), pages 236-251.
    2. Ghahramani, Afshin & Moore, Andrew D., 2015. "Systemic adaptations to climate change in southern Australian grasslands and livestock: Production, profitability, methane emission and ecosystem function," Agricultural Systems, Elsevier, vol. 133(C), pages 158-166.
    3. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    4. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    5. Williams, Allyson & Mushtaq, Shahbaz & Kouadio, Louis & Power, Brendan & Marcussen, Torben & McRae, David & Cockfield, Geoff, 2018. "An investigation of farm-scale adaptation options for cotton production in the face of future climate change and water allocation policies in southern Queensland, Australia," Agricultural Water Management, Elsevier, vol. 196(C), pages 124-132.
    6. Ghahramani, Afshin & Kingwell, Ross S. & Maraseni, Tek Narayan, 2020. "Land use change in Australian mixed crop-livestock systems as a transformative climate change adaptation," Agricultural Systems, Elsevier, vol. 180(C).
    7. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    8. Tristan Le Cotty & Bruno Dorin, 2012. "A global foresight on food crop needs for livestock," Post-Print hal-00800715, HAL.
    9. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 1. Physical production and economic performance," Agricultural Systems, Elsevier, vol. 97(3), pages 108-125, June.
    10. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    11. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    12. Brown, Peter R. & Bridle, Kerry L. & Crimp, Steven J., 2016. "Assessing the capacity of Australian broadacre mixed farmers to adapt to climate change: Identifying constraints and opportunities," Agricultural Systems, Elsevier, vol. 146(C), pages 129-141.
    13. McCown, R. L., 2002. "Changing systems for supporting farmers' decisions: problems, paradigms, and prospects," Agricultural Systems, Elsevier, vol. 74(1), pages 179-220, October.
    14. Hutchings, Timothy R., 2009. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia – Part 1," AFBM Journal, Australasian Farm Business Management Network, vol. 6(1), pages 1-16, October.
    15. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    16. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    17. Fiala, Nathan, 2008. "Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production," Ecological Economics, Elsevier, vol. 67(3), pages 412-419, October.
    18. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    19. Martin, R. & de Haas, Ralph & Muuls, Mirabelle & Schweiger, Helena, 2021. "Managerial and Financial Barriers to the Net-Zero Transition," Other publications TiSEM f0572d8a-40d7-458f-bb43-8, Tilburg University, School of Economics and Management.
    20. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:146:y:2016:i:c:p:142-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.