IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v134y2015icp84-96.html
   My bibliography  Save this article

From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso

Author

Listed:
  • Andrieu, N.
  • Vayssières, J.
  • Corbeels, M.
  • Blanchard, M.
  • Vall, E.
  • Tittonell, P.

Abstract

Traditionally, cereal crop harvest residues are communally grazed by the ruminant herds of villagers and transhumant pastoralists in the agro-pastoral systems which predominate in the savannah zone of West Africa. We analysed the impact of the private use of crop residues by individual farmers on crop and livestock productivity at three scales: the field, farm, and village. We collected data in the village of Koumbia, located in the Sudanian region of Burkina Faso. Three types of farmers were identified: resource-poor farmers, predominantly livestock farmers, and resource-rich farmers. The trade-offs between different uses and users of cereal crop residues at the three scales were analysed through field surveys and a simple model of biomass flows. We considered current communal use practices and two alternative scenarios of private cereal crop residue use: (i) for composting (fertility scenario) and (ii) as fodder (fodder scenario). Our analysis of current practices confirmed that farmers left around 80% of cereal crop residues on their fields. Soil fertility for cereal production therefore could be improved through crop residue management at the farm scale. We also found that communal grazing benefited farmers with high numbers of livestock. Maize grain production at the farm scale was improved in both of the simulated scenarios. Yet these scenarios had a negative impact on fodder self-sufficiency at the village scale, and on the N balance of the savannah-derived rangelands. The negative impact was greater in the fertility scenario than the fodder stock scenario. Increasing cereal productivity at the farm scale cannot be achieved without considering the trade-offs involved at the village scale. Changes in practices will require negotiations between the different types of farmers involved. Participatory innovation platforms with discussion support tools like the model presented in our study can facilitate such negotiations.

Suggested Citation

  • Andrieu, N. & Vayssières, J. & Corbeels, M. & Blanchard, M. & Vall, E. & Tittonell, P., 2015. "From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso," Agricultural Systems, Elsevier, vol. 134(C), pages 84-96.
  • Handle: RePEc:eee:agisys:v:134:y:2015:i:c:p:84-96
    DOI: 10.1016/j.agsy.2014.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1400122X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    2. Manlay, Raphael J. & Ickowicz, Alexandre & Masse, Dominique & Floret, Christian & Richard, Didier & Feller, Christian, 2004. "Spatial carbon, nitrogen and phosphorus budget of a village in the West African savanna--I. Element pools and structure of a mixed-farming system," Agricultural Systems, Elsevier, vol. 79(1), pages 55-81, January.
    3. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    4. Stoorvogel, J. J. & Antle, J. M. & Crissman, C. C. & Bowen, W., 2004. "The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems," Agricultural Systems, Elsevier, vol. 80(1), pages 43-66, April.
    5. Gebremedhin, Berhanu & Pender, John & Tesfay, Girmay, 2004. "Collective action for grazing land management in crop-livestock mixed systems in the highlands of northern Ethiopia," Agricultural Systems, Elsevier, vol. 82(3), pages 273-290, December.
    6. Bosma, R. H. & Bos, M. & Kante, S. & Kebe, D. & Quak, W., 1999. "The promising impact of ley introduction and herd expansion on soil organic matter content in southern Mali," Agricultural Systems, Elsevier, vol. 62(1), pages 1-15, October.
    7. Manlay, Raphael J. & Ickowicz, Alexandre & Masse, Dominique & Feller, Christian & Richard, Didier, 2004. "Spatial carbon, nitrogen and phosphorus budget in a village of the West African savanna--II. Element flows and functioning of a mixed-farming system," Agricultural Systems, Elsevier, vol. 79(1), pages 83-107, January.
    8. Powell, J. M. & Fernandez-Rivera, S. & Hiernaux, P. & Turner, M. D., 1996. "Nutrient cycling in integrated rangeland/cropland systems of the Sahel," Agricultural Systems, Elsevier, vol. 52(2-3), pages 143-170.
    9. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    10. Somda, Jacques & Nianogo, A. Joseph & Nassa, Suleymane & Sanou, Seydou, 2002. "Soil fertility management and socio-economic factors in crop-livestock systems in Burkina Faso: a case study of composting technology," Ecological Economics, Elsevier, vol. 43(2-3), pages 175-183, December.
    11. Bationo, Andre & Kihara, Job & Vanlauwe, Bernard & Waswa, Boaz & Kimetu, Joseph, 2007. "Soil organic carbon dynamics, functions and management in West African agro-ecosystems," Agricultural Systems, Elsevier, vol. 94(1), pages 13-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    2. Turner, Matthew D., 2020. "Assessment through socioecological abstraction: The case of nutrient management models in Sudano-Sahelian West Africa," Land Use Policy, Elsevier, vol. 96(C).
    3. Grillot, Myriam & Vayssières, Jonathan & Masse, Dominique, 2018. "Agent-based modelling as a time machine to assess nutrient cycling reorganization during past agrarian transitions in West Africa," Agricultural Systems, Elsevier, vol. 164(C), pages 133-151.
    4. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    5. Mupangi Sithole & Assan Ng’ombe & Collins M. Musafiri & Milka Kiboi & Tomas Sales & Felix K. Ngetich, 2023. "The Role of Agricultural Projects in Building Sustainable and Resilient Maize Value Chain in Burkina Faso," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    6. Falconnier, Gatien N. & Descheemaeker, Katrien & Van Mourik, Thomas A. & Sanogo, Ousmane M. & Giller, Ken E., 2015. "Understanding farm trajectories and development pathways: Two decades of change in southern Mali," Agricultural Systems, Elsevier, vol. 139(C), pages 210-222.
    7. Mangirdas Morkunas & Povilas Labukas, 2020. "The Evaluation of Negative Factors of Direct Payments under Common Agricultural Policy from a Viewpoint of Sustainability of Rural Regions of the New EU Member States: Evidence from Lithuania," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    8. Meine van Noordwijk & Erika Speelman & Gert Jan Hofstede & Ai Farida & Ali Yansyah Abdurrahim & Andrew Miccolis & Arief Lukman Hakim & Charles Nduhiu Wamucii & Elisabeth Lagneaux & Federico Andreotti , 2020. "Sustainable Agroforestry Landscape Management: Changing the Game," Land, MDPI, vol. 9(8), pages 1-38, July.
    9. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).
    2. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    3. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    4. Belem, Mahamadou & Manlay, Raphaël J. & Müller, Jean-Pierre & Chotte, Jean-Luc, 2011. "CaTMAS: A multi-agent model for simulating the dynamics of carbon resources of West African villages," Ecological Modelling, Elsevier, vol. 222(20), pages 3651-3661.
    5. Mahamadou Belem & Sansa Youl & Raphael Manlay & Bruno Barbier & Christophe Lepage, 2000. "MIROT: A multi-Agent System Model for the Simulation of the Dynamics of Carbon Resources of West-African Village Territories," Regional and Urban Modeling 283600008, EcoMod.
    6. Rimhanen, Karoliina & Kahiluoto, Helena, 2014. "Management of harvested C in smallholder mixed farming in Ethiopia," Agricultural Systems, Elsevier, vol. 130(C), pages 13-22.
    7. Vayssières, Jonathan & Vigne, Mathieu & Alary, Véronique & Lecomte, Philippe, 2011. "Integrated participatory modelling of actual farms to support policy making on sustainable intensification," Agricultural Systems, Elsevier, vol. 104(2), pages 146-161, February.
    8. Komarek, Adam M. & McDonald, Cam K. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & MacLeod, Neil D. & Bellotti, William D., 2012. "Whole-farm effects of livestock intensification in smallholder systems in Gansu, China," Agricultural Systems, Elsevier, vol. 109(C), pages 16-24.
    9. Grillot, Myriam & Vayssières, Jonathan & Masse, Dominique, 2018. "Agent-based modelling as a time machine to assess nutrient cycling reorganization during past agrarian transitions in West Africa," Agricultural Systems, Elsevier, vol. 164(C), pages 133-151.
    10. de Ridder, Nico & Breman, Henk & van Keulen, Herman & Stomph, Tjeerd Jan, 2004. "Revisiting a `cure against land hunger': soil fertility management and farming systems dynamics in the West African Sahel," Agricultural Systems, Elsevier, vol. 80(2), pages 109-131, May.
    11. Leroux, L. & Falconnier, G.N. & Diouf, A.A. & Ndao, B. & Gbodjo, J.E. & Tall, L. & Balde, A.A. & Clermont-Dauphin, C. & Bégué, A. & Affholder, F. & Roupsard, O., 2020. "Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal," Agricultural Systems, Elsevier, vol. 184(C).
    12. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    13. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    14. Claessens, L. & Stoorvogel, J.J. & Antle, J.M., 2008. "Ex ante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach," Agricultural Systems, Elsevier, vol. 99(1), pages 13-22, December.
    15. Andrieu, Nadine & Descheemaeker, Katrien & Sanou, Thierry & Chia, Eduardo, 2015. "Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa," Agricultural Systems, Elsevier, vol. 136(C), pages 125-137.
    16. Ronner, E. & Descheemaeker, K. & Almekinders, C. & Ebanyat, P. & Giller, K.E., 2019. "Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda," Agricultural Systems, Elsevier, vol. 175(C), pages 1-12.
    17. Castellanos-Navarrete, A. & Tittonell, P. & Rufino, M.C. & Giller, K.E., 2015. "Feeding, crop residue and manure management for integrated soil fertility management – A case study from Kenya," Agricultural Systems, Elsevier, vol. 134(C), pages 24-35.
    18. Rodriguez, D & de Voil, P & Rufino, MC & Odendo, M & van Wijk, MT, 2017. "To mulch or to munch? Big modelling of big data," Agricultural Systems, Elsevier, vol. 153(C), pages 32-42.
    19. Baudron, Frédéric & Delmotte, Sylvestre & Corbeels, Marc & Herrera, Juan M. & Tittonell, Pablo, 2015. "Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 97-106.
    20. Meine van Noordwijk & Erika Speelman & Gert Jan Hofstede & Ai Farida & Ali Yansyah Abdurrahim & Andrew Miccolis & Arief Lukman Hakim & Charles Nduhiu Wamucii & Elisabeth Lagneaux & Federico Andreotti , 2020. "Sustainable Agroforestry Landscape Management: Changing the Game," Land, MDPI, vol. 9(8), pages 1-38, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:134:y:2015:i:c:p:84-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.