IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v187y2021ics0308521x20308428.html
   My bibliography  Save this article

Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?

Author

Listed:
  • Berre, D.
  • Diarisso, T.
  • Andrieu, N.
  • Le Page, C.
  • Corbeels, M.

Abstract

In West Africa, new management practices such as conservation agriculture with crop residue mulching can improve crop yields for individual farmers. However, in a context of complex social interactions between farmers, the introduction of such practices can also lead to conflicts between private interests and communal use of resources, for example the free grazing of crop residues. The objective of this paper was to assess ex-ante the impacts of the practice of crop residue mulching on crop productivity in a village of central Burkina Faso using an agent-based model, AMBAWA, that simulates the flows of biomass and nutrients between crop and livestock systems at the village scale. The model considers the interactions between four types of farmers that were identified in the study site: subsistence-oriented crop farmers, market-oriented crop farmers, agro-pastoralists and pastoralists. The model simulated increased cattle migration outside the village due to increased crop residue scarcity during the dry season with increased proportions of cropland under the practice of conservation agriculture, decreasing the manure availability at village scale. Consequently, the assumed direct yield increases due to soil moisture conservation as a result of mulching did not compensate for the yield losses resulting from lesser amounts of manure available. This effect was felt most strongly by farmers who own relatively large numbers of cattle (agro-pastoralists and pastoralists). The total maize production at village level depended more on the proportion of cropping land that was available for grazing by cattle, and thus not mulched, than on a possible direct effect of mulching on yield per se. The AMBAWA model can support discussion among stakeholders (farmers, traditional and administrative authorities) who are involved in the private and communal management of crop residues and other biomass resources, in order to co-design effective arrangements and practices for their sustainable use.

Suggested Citation

  • Berre, D. & Diarisso, T. & Andrieu, N. & Le Page, C. & Corbeels, M., 2021. "Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching?," Agricultural Systems, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:agisys:v:187:y:2021:i:c:s0308521x20308428
    DOI: 10.1016/j.agsy.2020.102981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20308428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    2. Rufino, M.C. & Dury, J. & Tittonell, P. & van Wijk, M.T. & Herrero, M. & Zingore, S. & Mapfumo, P. & Giller, K.E., 2011. "Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe," Agricultural Systems, Elsevier, vol. 104(2), pages 175-190, February.
    3. Manlay, Raphael J. & Ickowicz, Alexandre & Masse, Dominique & Floret, Christian & Richard, Didier & Feller, Christian, 2004. "Spatial carbon, nitrogen and phosphorus budget of a village in the West African savanna--I. Element pools and structure of a mixed-farming system," Agricultural Systems, Elsevier, vol. 79(1), pages 55-81, January.
    4. Manlay, Raphael J. & Ickowicz, Alexandre & Masse, Dominique & Feller, Christian & Richard, Didier, 2004. "Spatial carbon, nitrogen and phosphorus budget in a village of the West African savanna--II. Element flows and functioning of a mixed-farming system," Agricultural Systems, Elsevier, vol. 79(1), pages 83-107, January.
    5. Bell, Andrew & Parkhurst, Gregory & Droppelmann, Klaus & Benton, Tim G., 2016. "Scaling up pro-environmental agricultural practice using agglomeration payments: Proof of concept from an agent-based model," Ecological Economics, Elsevier, vol. 126(C), pages 32-41.
    6. Mahamadou Belem & Didier Bazile & Harouna Coulibaly, 2018. "Simulating the Impacts of Climate Variability and Change on Crop Varietal Diversity in Mali (West-Africa) Using Agent-Based Modeling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-8.
    7. Amadou, Mahamadou L. & Villamor, Grace B. & Kyei-Baffour, Nicholas, 2018. "Simulating agricultural land-use adaptation decisions to climate change: An empirical agent-based modelling in northern Ghana," Agricultural Systems, Elsevier, vol. 166(C), pages 196-209.
    8. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    9. Andrieu, N. & Vayssières, J. & Corbeels, M. & Blanchard, M. & Vall, E. & Tittonell, P., 2015. "From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso," Agricultural Systems, Elsevier, vol. 134(C), pages 84-96.
    10. Jahel, Camille & Baron, Christian & Vall, Eric & Karambiri, Medina & Castets, Mathieu & Coulibaly, Kalifa & Bégué, Agnès & Lo Seen, Danny, 2017. "Spatial modelling of agro-ecosystem dynamics across scales: A case in the cotton region of West-Burkina Faso," Agricultural Systems, Elsevier, vol. 157(C), pages 303-315.
    11. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    12. Saqalli, M. & Gérard, B. & Bielders, C.L. & Defourny, P., 2011. "Targeting rural development interventions: Empirical agent-based modeling in Nigerien villages," Agricultural Systems, Elsevier, vol. 104(4), pages 354-364, April.
    13. Grillot, Myriam & Vayssières, Jonathan & Masse, Dominique, 2018. "Agent-based modelling as a time machine to assess nutrient cycling reorganization during past agrarian transitions in West Africa," Agricultural Systems, Elsevier, vol. 164(C), pages 133-151.
    14. Bationo, Andre & Kihara, Job & Vanlauwe, Bernard & Waswa, Boaz & Kimetu, Joseph, 2007. "Soil organic carbon dynamics, functions and management in West African agro-ecosystems," Agricultural Systems, Elsevier, vol. 94(1), pages 13-25, April.
    15. Rasch, Sebastian & Heckelei, Thomas & Storm, Hugo & Oomen, Roelof & Naumann, Christiane, 2017. "Multi-scale resilience of a communal rangeland system in South Africa," Ecological Economics, Elsevier, vol. 131(C), pages 129-138.
    16. Belem, Mahamadou & Manlay, Raphaël J. & Müller, Jean-Pierre & Chotte, Jean-Luc, 2011. "CaTMAS: A multi-agent model for simulating the dynamics of carbon resources of West African villages," Ecological Modelling, Elsevier, vol. 222(20), pages 3651-3661.
    17. Michalscheck, Mirja & Groot, Jeroen C.J. & Fischer, Gundula & Tittonell, Pablo, 2020. "Land use decisions: By whom and to whose benefit? A serious game to uncover dynamics in farm land allocation at household level in Northern Ghana," Land Use Policy, Elsevier, vol. 91(C).
    18. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    2. Berre, David & Adam, Myriam & Koffi, Christophe K. & Vigne, Mathieu & Gautier, Denis, 2022. "Tailoring management practices to the structure of smallholder households in Sudano-Sahelian Burkina Faso: Evidence from current practices," Agricultural Systems, Elsevier, vol. 198(C).
    3. Aubron, Claire & Vigne, Mathieu & Philippon, Olivier & Lucas, Corentin & Lesens, Pierre & Upton, Spencer & Salgado, Paulo & Ruiz, Laurent, 2021. "Nitrogen metabolism of an Indian village based on the comparative agriculture approach: How characterizing social diversity was essential for understanding crop-livestock integration," Agricultural Systems, Elsevier, vol. 193(C).
    4. Leroux, L. & Faye, N.F. & Jahel, C. & Falconnier, G.N. & Diouf, A.A. & Ndao, B. & Tiaw, I. & Senghor, Y. & Kanfany, G. & Balde, A. & Dieye, M. & Sirdey, N. & Alobo Loison, S. & Corbeels, M. & Baudron,, 2022. "Exploring the agricultural landscape diversity-food security nexus: an analysis in two contrasted parklands of Central Senegal," Agricultural Systems, Elsevier, vol. 196(C).
    5. Rebecca Sarku & Ulfia A. Clemen & Thomas Clemen, 2023. "The Application of Artificial Intelligence Models for Food Security: A Review," Agriculture, MDPI, vol. 13(10), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrieu, N. & Vayssières, J. & Corbeels, M. & Blanchard, M. & Vall, E. & Tittonell, P., 2015. "From farm scale synergies to village scale trade-offs: Cereal crop residues use in an agro-pastoral system of the Sudanian zone of Burkina Faso," Agricultural Systems, Elsevier, vol. 134(C), pages 84-96.
    2. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    3. Belem, Mahamadou & Manlay, Raphaël J. & Müller, Jean-Pierre & Chotte, Jean-Luc, 2011. "CaTMAS: A multi-agent model for simulating the dynamics of carbon resources of West African villages," Ecological Modelling, Elsevier, vol. 222(20), pages 3651-3661.
    4. Rimhanen, Karoliina & Kahiluoto, Helena, 2014. "Management of harvested C in smallholder mixed farming in Ethiopia," Agricultural Systems, Elsevier, vol. 130(C), pages 13-22.
    5. Zheng, Chaohui & Liu, Yi & Bluemling, Bettina & Chen, Jining & Mol, Arthur P.J., 2013. "Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach," Agricultural Systems, Elsevier, vol. 122(C), pages 60-72.
    6. Baudron, Frédéric & Delmotte, Sylvestre & Corbeels, Marc & Herrera, Juan M. & Tittonell, Pablo, 2015. "Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 97-106.
    7. Meine van Noordwijk & Erika Speelman & Gert Jan Hofstede & Ai Farida & Ali Yansyah Abdurrahim & Andrew Miccolis & Arief Lukman Hakim & Charles Nduhiu Wamucii & Elisabeth Lagneaux & Federico Andreotti , 2020. "Sustainable Agroforestry Landscape Management: Changing the Game," Land, MDPI, vol. 9(8), pages 1-38, July.
    8. Grillot, Myriam & Vayssières, Jonathan & Masse, Dominique, 2018. "Agent-based modelling as a time machine to assess nutrient cycling reorganization during past agrarian transitions in West Africa," Agricultural Systems, Elsevier, vol. 164(C), pages 133-151.
    9. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    10. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    11. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    12. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    13. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    14. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    15. Leroux, L. & Falconnier, G.N. & Diouf, A.A. & Ndao, B. & Gbodjo, J.E. & Tall, L. & Balde, A.A. & Clermont-Dauphin, C. & Bégué, A. & Affholder, F. & Roupsard, O., 2020. "Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal," Agricultural Systems, Elsevier, vol. 184(C).
    16. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    17. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    18. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    19. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    20. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:187:y:2021:i:c:s0308521x20308428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.