IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2023-06-71.html
   My bibliography  Save this article

Determinants of Renewable Energy Production in Egypt New Approach: Machine Learning Algorithms

Author

Listed:
  • Hamdy Ahmad Aly Alhendawy

    (Department of Economic, Faculty of Commerce, Mansoura University, Egypt,)

  • Mohammed Galal Abdallah Mostafa

    (Department of Economic, Faculty of Commerce, Mansoura University, Egypt,)

  • Mohamed Ibrahim Elgohari

    (Faculty of Law, Mansoura University, Egypt,)

  • Ibrahim Abdalla Abdelraouf Mohamed

    (Faculty of Law, Mansoura University, Egypt,)

  • Nabil Medhat Arafat Mahmoud

    (Department of Statistics, Faculty of Commerce, Mansoura University, Egypt.)

  • Mohamed Ahmed Mohamed Mater

    (Department of Economic, Faculty of Commerce, Mansoura University, Egypt,)

Abstract

The production of renewable energy has become one of the important elements in the pursuit of sustainable and environmentally friendly economic development, and countries of the world are increasingly adopting renewable energy sources to reduce the carbon footprint and mitigate the effects of climate change. As a result, the goal of this paper is to use different machine learning methods (Random Forest, Gradient Boosting, Support Vector Machine, Naïve Bayes and K-nearest neighbors) to establish which of these algorithms is the most accurate in predicting the values of Egypt's renewable energy production on the one hand, and recognizing the main determinants of this renewable energy production on the other. the paper proved that the Gradient Boosting model is the most accurate machine learning method. It also showed that the main determinant of Egypt's renewable energy production is Governance indicators (60%), then GDP per capita growth by(13%) and Population growth by(10%).As for the rest of the other variables, such as the price of oil , CO2 emissions, Renewable energy technical innovation, Renewable energy adaptation and Energy imports they have no effect. This paper recommends expanding the use of machine learning methods in macroeconomic models.

Suggested Citation

  • Hamdy Ahmad Aly Alhendawy & Mohammed Galal Abdallah Mostafa & Mohamed Ibrahim Elgohari & Ibrahim Abdalla Abdelraouf Mohamed & Nabil Medhat Arafat Mahmoud & Mohamed Ahmed Mohamed Mater, 2023. "Determinants of Renewable Energy Production in Egypt New Approach: Machine Learning Algorithms," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 679-689, November.
  • Handle: RePEc:eco:journ2:2023-06-71
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/14985/7624
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/14985
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    2. Mr. Andrew J Tiffin, 2016. "Seeing in the Dark: A Machine-Learning Approach to Nowcasting in Lebanon," IMF Working Papers 2016/056, International Monetary Fund.
    3. Huang, Ming-Yuan & Alavalapati, Janaki R.R. & Carter, Douglas R. & Langholtz, Matthew H., 2007. "Is the choice of renewable portfolio standards random?," Energy Policy, Elsevier, vol. 35(11), pages 5571-5575, November.
    4. Hamdy Ahmad Aly Alhendawya & Mohammed Galal Abdallah Mostafa & Sozan Galal Elkananib & Neveen Mohsen Ahamed Zakic & Mousa Gowfal Selmeya, 2023. "Using Generalized Linear Model to Determine the Impact of Oil Price Fluctuations on the Egyptian Public Budget," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 92-99, March.
    5. Apergis, Nicholas & Pinar, Mehmet, 2021. "The role of party polarization in renewable energy consumption: Fresh evidence across the EU countries," Energy Policy, Elsevier, vol. 157(C).
    6. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    7. Jamasb, Tooraj & Pollitt, Michael, 2008. "Security of supply and regulation of energy networks," Energy Policy, Elsevier, vol. 36(12), pages 4584-4589, December.
    8. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    9. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    10. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    11. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    12. Vona, Francesco & Patriarca, Fabrizio, 2011. "Income inequality and the development of environmental technologies," Ecological Economics, Elsevier, vol. 70(11), pages 2201-2213, September.
    13. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    14. Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
    15. Mohammed Galal Abdallah Mostafa & Mousa Gowfal Selmey Gowfal Selmey, 2022. "Determinants of Energy Consumption in Egypt New Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 175-180, March.
    16. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Are public policies towards renewables successful? Evidence from European countries," Renewable Energy, Elsevier, vol. 44(C), pages 109-118.
    17. Seokho Kang, 2021. "k -Nearest Neighbor Learning with Graph Neural Networks," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    18. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    19. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    20. Vaona, Andrea, 2012. "Granger non-causality tests between (non)renewable energy consumption and output in Italy since 1861: The (ir)relevance of structural breaks," Energy Policy, Elsevier, vol. 45(C), pages 226-236.
    21. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    22. Salim, Ruhul A. & Rafiq, Shuddhasattwa, 2012. "Why do some emerging economies proactively accelerate the adoption of renewable energy?," Energy Economics, Elsevier, vol. 34(4), pages 1051-1057.
    23. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    24. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    25. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    26. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    27. Ankrah, Isaac & Lin, Boqiang, 2020. "Renewable energy development in Ghana: Beyond potentials and commitment," Energy, Elsevier, vol. 198(C).
    28. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Marra & Emiliano Colantonio, 2022. "The institutional and socio-technical determinants of renewable energy production in the EU: implications for policy," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(2), pages 267-299, June.
    2. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    3. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    4. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    6. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    7. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    8. Lu, Zhou & Gozgor, Giray & Mahalik, Mantu Kumar & Padhan, Hemachandra & Yan, Cheng, 2022. "Welfare gains from international trade and renewable energy demand: Evidence from the OECD countries," Energy Economics, Elsevier, vol. 112(C).
    9. Chu, Lan Khanh & Ghosh, Sudeshna & Doğan, Buhari & Nguyen, Nam Hoai & Shahbaz, Muhammad, 2023. "Energy security as new determinant of renewable energy: The role of economic complexity in top energy users," Energy, Elsevier, vol. 263(PC).
    10. Mac Domhnaill, Ciarán & Ryan, Lisa, 2020. "Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union," Renewable Energy, Elsevier, vol. 154(C), pages 955-965.
    11. Valérie Mignon & Margaux Escoffier & Emmanuel Hache & Anthony Paris, 2019. "Determinants of investments in solar photovoltaic: Do oil prices really matter?," EconomiX Working Papers 2019-28, University of Paris Nanterre, EconomiX.
    12. Kassouri, Yacouba & Altuntaş, Mehmet & Alola, Andrew Adewale, 2022. "The contributory capacity of natural capital to energy transition in the European Union," Renewable Energy, Elsevier, vol. 190(C), pages 617-629.
    13. Delia-Elena Diaconașu & Ionel Bostan & Cristina Căutișanu & Irina Chiriac, 2022. "Insights into the Sustainable Development of the Bioeconomy at the European Level, in the Context of the Desired Clean Environment," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
    14. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    15. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    16. Muhammad Jamil & Farhan Ahmed & Gouranga Chandra Debnath & Štefan Bojnec, 2022. "Transition to Renewable Energy Production in the United States: The Role of Monetary, Fiscal, and Trade Policy Uncertainty," Energies, MDPI, vol. 15(13), pages 1-15, June.
    17. Li Ma & Die Xu, 2021. "Toward Renewable Energy in China: Revisiting Driving Factors of Chinese Wind Power Generation Development and Spatial Distribution," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    18. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.
    19. Oosthuizen, A.M. & Inglesi-Lotz, R., 2022. "The impact of policy priority flexibility on the speed of renewable energy adoption," Renewable Energy, Elsevier, vol. 194(C), pages 426-438.
    20. Can Şener, Şerife Elif & Sharp, Julia L. & Anctil, Annick, 2018. "Factors impacting diverging paths of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2335-2342.

    More about this item

    Keywords

    Renewable Energy Production; Egypt; Machine Learning Algorithms; Gradient Boosting;
    All these keywords.

    JEL classification:

    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2023-06-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.