IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-05-67.html
   My bibliography  Save this article

Impact of Photovoltaic Microgrid System on Renewable Energy Building

Author

Listed:
  • Hussain Attia

    (Department of Electrical, Electronics and Communications Engineering, School of Engineering, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates)

Abstract

This paper analyzes the supportive function of the photovoltaic PV system in integrating the microgrid role to deliver the necessarily clean electricity to the individual dwellings. The study focuses on the merit of the flexibility in designing a renewable energy PV system in terms of power quality and quantity, in addition to reducing the air pollution by reducing the dependency on the conventional power generation station. A comparison between a direct current DC microgrid and an alternating current AC microgrid is shown in terms of system s components and requirements. The process of an algorithm for the Maximum Power Point Tracking MPPT to guarantee a higher level of harvested energy is also shown. A PV system design is introduced in this study for a desired power level generating to satisfy the electricity requirements of a small scale dwelling with a maximum power delivering capability of 9 kW. MATLAB/Simulink is adopted to investigate and evaluate the PV system performance in guaranteeing the MPPT functioning.

Suggested Citation

  • Hussain Attia, 2021. "Impact of Photovoltaic Microgrid System on Renewable Energy Building," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 586-592.
  • Handle: RePEc:eco:journ2:2021-05-67
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/11603/6060
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/11603/6060
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    2. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Robles-Algar n & V ctor Olivero-Ort z & Diego Restrepo-Leal, 2022. "Techno-Economic Analysis of MPPT and PWM Controllers Performance in Off-Grid PV Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 370-376, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    2. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Huang, Shoujun & Yang, Jun & Li, Shanjun, 2017. "Black-Scholes option pricing strategy and risk-averse coordination for designing vehicle-to-grid reserve contracts," Energy, Elsevier, vol. 137(C), pages 325-335.
    4. San Román, Tomás Gómez & Momber, Ilan & Abbad, Michel Rivier & Sánchez Miralles, Álvaro, 2011. "Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships," Energy Policy, Elsevier, vol. 39(10), pages 6360-6375, October.
    5. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    6. Schmidt, Johannes & Eisel, Matthias & Kolbe, Lutz M., 2014. "Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems," Energy Policy, Elsevier, vol. 74(C), pages 179-189.
    7. Ifiok Anthony Umoren & Muhammad Zeeshan Shakir, 2022. "Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers," Energies, MDPI, vol. 15(19), pages 1-23, September.
    8. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    9. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    10. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    11. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    12. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    13. Jayawardena, A.V. & Meegahapola, L.G. & Robinson, D.A. & Perera, S., 2015. "Microgrid capability diagram: A tool for optimal grid-tied operation," Renewable Energy, Elsevier, vol. 74(C), pages 497-504.
    14. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    15. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    16. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    17. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    18. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    19. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    20. Esteban, Miguel & Zhang, Qi & Utama, Agya & Tezuka, Tetsuo & Ishihara, Keiichi N., 2010. "Methodology to estimate the output of a dual solar-wind renewable energy system in Japan," Energy Policy, Elsevier, vol. 38(12), pages 7793-7802, December.

    More about this item

    Keywords

    Renewable energy sources; Microgrid system; traditional power station; Photovoltaic PV panel; MPPT algorithm; MATLAB/Simulink.;
    All these keywords.

    JEL classification:

    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-05-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.