IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-04-56.html
   My bibliography  Save this article

The Future Strategies of the Wind Power Development in Albania: Case Study: Qafe Thane, Pogradec, Albania

Author

Listed:
  • Lorenc Malka

    (Department of Energy, Faculty of Mechanical Engineering, Polytechnic University of Tirana, Albania)

  • Elena Bebi

    (Department of Production and Management, Faculty of Mechanical Engineering, Polytechnic University of Tirana, Albania,)

  • Majlinda Alcani

    (Department of Energy, Faculty of Mechanical Engineering, Polytechnic University of Tirana, Albania)

  • Ilirian Konomi

    (Department of Hydraulic & Hydrotechnic, Faculty of Civil Engineering, Polytechnic University of Tirana, Albania)

  • Pietro Bartocci

    (CRB Italian Biomass Research Centre, University of Perugia, 06100 Perugia, Italy)

  • Evis Berberi

    (AEE, General Director of Energy Efficiency Agency, Tirana, Albania,)

  • Matilda Shehu(Tola)

    (Department of Finance, Faculty of Economy, University of Tirana, Albania)

  • Ardit Gjeta

    (Department of Energy, Faculty of Mechanical Engineering, Polytechnic University of Tirana, Albania)

  • Ermonela Rrapaj

    (Department of Energy, Faculty of Mechanical Engineering, Polytechnic University of Tirana, Albania)

Abstract

The development of the electricity sector in Albania continues to be fenced by high rates of inefficiencies, insufficient security of supply, low rate of RES investment including wind power plants and the need to further unbundle and liberalise the energy market following the adoption of the legal basis, including GHG credits is inevitable. A lot of issues are set to face the challenges of energy transition, oriented by the Albanian government s endeavor to maintain a sustainable, secure, flexible in time, efficiently supplied, climate-friendly and affordable energy supply system is required. The most critical aspects to attain 2030 energy goals and beyond cannot be achieved without the promotion of carbonless power technologies reducing (GHG) emissions. As a consequence, huge investments in RES energy based power generation systems and related RES technologies are required. To subjugate the barriers to clean energy technology implementation especially at the preliminary feasibility stage, the latest model, RETScreen Expert 8 added the ability to rapidly analyze the feasibility of multiple wind power plant options at real site condition. This fast feature of the model enables us to assess the real potential of the proposed 27 MW wind farm by choosing a set of 16 different turbine types and models combined into 14 possible scenarios with the aim to expand the capacity in the future is applied. From the simulation executed in RETScreen Expert the technical and economic optimization of the proposed energy system is achieved. Sector-specific actions are explored in the paper, but at the higher level of specific investment costs and a number of cross-cutting actions that should be addressed with urgency from policy makers in the country are identified.

Suggested Citation

  • Lorenc Malka & Elena Bebi & Majlinda Alcani & Ilirian Konomi & Pietro Bartocci & Evis Berberi & Matilda Shehu(Tola) & Ardit Gjeta & Ermonela Rrapaj, 2021. "The Future Strategies of the Wind Power Development in Albania: Case Study: Qafe Thane, Pogradec, Albania," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 486-503.
  • Handle: RePEc:eco:journ2:2021-04-56
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/11228/5962
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/11228/5962
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    2. Matthew Tisdale & Thilo Grau & Karsten Neuhoff, 2014. "Impact of Renewable Energy Act Reform on Wind Project Finance," Discussion Papers of DIW Berlin 1387, DIW Berlin, German Institute for Economic Research.
    3. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    4. Houri, Ahmad, 2006. "Solar water heating in Lebanon: Current status and future prospects," Renewable Energy, Elsevier, vol. 31(5), pages 663-675.
    5. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    6. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    7. Kikuchi, Emi & Bristow, David & Kennedy, Christopher A., 2009. "Evaluation of region-specific residential energy systems for GHG reductions: Case studies in Canadian cities," Energy Policy, Elsevier, vol. 37(4), pages 1257-1266, April.
    8. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    9. Lorenc Malka & Ilirian Konomi & Ardit Gjeta & Skerdi Drenova & Jugert Gjikoka, 2020. "An Approach to the Large-scale Integration of Wind Energy in Albania," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    7. van Zuijlen, Bas & Zappa, William & Turkenburg, Wim & van der Schrier, Gerard & van den Broek, Machteld, 2019. "Cost-optimal reliable power generation in a deep decarbonisation future," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    10. Alonso-Tristán, C. & González-Peña, D. & Díez-Mediavilla, M. & Rodríguez-Amigo, M. & García-Calderón, T., 2011. "Small hydropower plants in Spain: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2729-2735, August.
    11. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
    14. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    15. Knezović, Katarina & Marinakis, Adamantios & Evrenosoglu, C.Yaman & Oudalov, Alexandre, 2021. "Role of grid and bulk storage in the integration of variable renewable energy resources: Framework for optimal operation-driven multi-period infrastructure planning," Energy, Elsevier, vol. 226(C).
    16. Karsten Neuhoff, Sophia Wolter and Sebastian Schwenen, 2016. "Power markets with Renewables: New perspectives for the European Target Model," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    17. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    19. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    20. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).

    More about this item

    Keywords

    Wind Power Plant; HPP; RETScreen Expert; Net Present Value; Internal Rate of Return; Cash Flow;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-04-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.