IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-03-64.html
   My bibliography  Save this article

Computer Analysis of Energy and Resource Efficiency in the Context of Transformation of Petrochemical Supply Chains

Author

Listed:
  • Alexey I. Shinkevich

    (Department of Logistics and Management, Kazan National Research Technological University, Kazan, Russian Federation,)

  • Farida F. Galimulina

    (Department of Logistics and Management, Kazan National Research Technological University, Kazan, Russian Federation,)

  • Yulia S. Polozhentseva

    (Department of Regional Economics and Management, Southwestern State University, Kursk, Russian Federation.)

  • Alla A. Yarlychenko

    (Department of Logistics and Management, Kazan National Research Technological University, Kazan, Russian Federation,)

  • Naira V. Barsegyan

    (Department of Logistics and Management, Kazan National Research Technological University, Kazan, Russian Federation,)

Abstract

The purpose of this study is to identify areas of energy-efficient development in petrochemical supply chains through the use of computer analysis tools. The study uses system approach methods, comparisons, vertical dynamic analysis, economic and mathematical modeling, forecasting, factor analysis. Listed implementation methods helps to meet number of scientific results: systematized programs are applicable for petrochemical product supply management chains, as well as for a number of methods and algorithms developed by the authors in the framework of ensuring resource-saving development of petrochemical enterprises; dynamics assessment of supply chains' petrochemical products in terms of energy consumption and energy efficiency consumption indicators; a production function expressed in the form of dependence of the production energy efficiency between the factors of capital (Costs per 1 ruble of sold products) and labor (Labor intensity) is proposed, allowing rational planning in the parameters of the production and logistics system of the PJSC "Nizhnekamskneftekhim" enterprise; a factorial model is developed, as a result of which two factors (energy and economic) formed energy resource efficiency indicator of petrochemical supply chains is proposed. As a result, promising directions for reducing energy intensity production and improving of supply chains for petrochemical products energy efficiency are identified.

Suggested Citation

  • Alexey I. Shinkevich & Farida F. Galimulina & Yulia S. Polozhentseva & Alla A. Yarlychenko & Naira V. Barsegyan, 2021. "Computer Analysis of Energy and Resource Efficiency in the Context of Transformation of Petrochemical Supply Chains," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 529-536.
  • Handle: RePEc:eco:journ2:2021-03-64
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/11270/5849
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/11270/5849
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayres, Robert U. & van den Bergh, Jeroen C.J.M. & Lindenberger, Dietmar & Warr, Benjamin, 2013. "The underestimated contribution of energy to economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 27(C), pages 79-88.
    2. Marina V. Shinkevich & Nikolay A. Mashkin & Izida I. Ishmuradova & Valeria V. Kolosova & Olga V. Popova, 2020. "Management of Sustainable Consumption of Energy Resources in the Conditions of Digital Transformation of the Industrial Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 454-460.
    3. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    4. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    5. Rayenda Khresna Brahmana & Hiroya Ono, 2020. "Energy efficiency and company performance in Japanese listed companies," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 16(1), pages 24-40.
    6. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    7. Gulnara M. Kvon & Alexey I. Prokopyev & Victor A. Shestak & Anna A. Larionova & Evgeniya V. Shikh, 2019. "Features of Cost Advantages from Implementation of Energy-Saving Projects," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 53-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olukorede Tijani Adenuga & Khumbulani Mpofu & Ragosebo Kgaugelo Modise, 2022. "Energy–Carbon Emissions Nexus Causal Model towards Low-Carbon Products in Future Transport-Manufacturing Industries," Energies, MDPI, vol. 15(17), pages 1-13, August.
    2. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    3. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    4. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    5. Trainer, Ted, 2020. "De-growth: Some suggestions from the Simpler Way perspective," Ecological Economics, Elsevier, vol. 167(C).
    6. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    7. V. R. Bityukova, 2021. "Regional Projection of Environmental Consequences of Crises in the Russian Economy," Regional Research of Russia, Springer, vol. 11(4), pages 656-666, October.
    8. Alexey I. Shinkevich, 2020. "Modeling the Efficiency of Using Digital Technologies of Energy and Resource Saving Technologies at Petrochemical Enterprises," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 1-6.
    9. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    10. Rayenda Khresna Brahmana & Maria Kontesa, 2021. "Does clean technology weaken the environmental impact on the financial performance? Insight from global oil and gas companies," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3411-3423, November.
    11. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    12. Qiong Xia & Min Li & Huaqing Wu & Zhenggang Lu, 2016. "Does the Central Government’s Environmental Policy Work? Evidence from the Provincial-Level Environment Efficiency in China," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    13. Yoann Verger, 2015. "Sraffa and ecological economics: review of the literature," Working Papers hal-01182894, HAL.
    14. Eric Kemp‐Benedict, 2020. "Convergence of actual, warranted, and natural growth rates in a Kaleckian–Harrodian‐classical model," Metroeconomica, Wiley Blackwell, vol. 71(4), pages 851-881, November.
    15. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    17. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    18. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    19. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    20. Haiyun, Cui & Zhixiong, Huang & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    More about this item

    Keywords

    petrochemical products; supply chains; energy resource efficiency; energy saving; energy intensity of production;
    All these keywords.

    JEL classification:

    • D14 - Microeconomics - - Household Behavior - - - Household Saving; Personal Finance
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D41 - Microeconomics - - Market Structure, Pricing, and Design - - - Perfect Competition

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-03-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.