IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2021-02-30.html
   My bibliography  Save this article

Dependence of Energy Intensity on Economic Growth: Panel Data Analysis of South Asian Economies

Author

Listed:
  • Tahir Mahmood

    (School of Economics, QAU, Islamabad)

  • Shafqut Ullah

    (School of Economics, QAU, Islamabad, Pakistan)

  • Muhammad Mumtaz

    (Department of Management Sciences, University of Haripur, Pakistan)

Abstract

The dependence of energy intensity (energy/GDP ratio) on the economic growth is studied in details for the panel of South Asian economies. Typically, it is assumed that for the technological advanced developed economies a negative relationship between energy intensity and economic growth is valid due to declining trends of energy intensity and in developing economies positive relationship between energy intensity and economic growth is valid. However, if the trend effects are removed, the growth effects may not be energy saving in under developed world. This is the main hypothesis of this study. In order to test this hypothesis, we use de-trend energy intensity (trend effect is removed). We found positive relationship between de-trended energy intensity and economic growth for the panel of underdeveloped south Asian economies. These results suggest that the energy saving options for south Asian countries are very small. Therefore, we find the cost of converting energy into GDP high in the developing economies of south Asia.

Suggested Citation

  • Tahir Mahmood & Shafqut Ullah & Muhammad Mumtaz, 2021. "Dependence of Energy Intensity on Economic Growth: Panel Data Analysis of South Asian Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 234-239.
  • Handle: RePEc:eco:journ2:2021-02-30
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/10726/5726
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/10726/5726
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dinda, Soumyananda & Coondoo, Dipankor & Pal, Manoranjan, 2000. "Air quality and economic growth: an empirical study," Ecological Economics, Elsevier, vol. 34(3), pages 409-423, September.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    4. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    5. Prescott, Edward C, 1998. "Needed: A Theory of Total Factor Productivity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 525-551, August.
    6. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    7. Olivier J. Blanchard & Jordi Galí, 2007. "The Macroeconomic Effects of Oil Price Shocks: Why Are the 2000s so Different from the 1970s?," NBER Chapters, in: International Dimensions of Monetary Policy, pages 373-421, National Bureau of Economic Research, Inc.
    8. Maddala, G S & Wu, Shaowen, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    9. Olivier J. Blanchard & Jordi Gali, 2007. "The Macroeconomic Effects of Oil Shocks: Why are the 2000s So Different from the 1970s?," NBER Working Papers 13368, National Bureau of Economic Research, Inc.
    10. Baumol, William J & Blackman, Sue Anne Batey & Wolff, Edward N, 1985. "Unbalanced Growth Revisited: Asymptotic Stagnancy and New Evidence," American Economic Review, American Economic Association, vol. 75(4), pages 806-817, September.
    11. Deichmann,Uwe & Reuter,Anna & Vollmer,Sebastian & Zhang,Fan, 2018. "Relationship between energy intensity and economic growth : new evidence from a multi-country multi-sector data set," Policy Research Working Paper Series 8322, The World Bank.
    12. Tahir Mahmood & Tahir Mahmood & Mikael Linden, 2017. "Structural Change and Economic Growth in Schengen Region," International Journal of Economics and Financial Issues, Econjournals, vol. 7(1), pages 303-311.
    13. Sarbapriya Ray, 2012. "Productivity Growth in Some Energy Intensive Manufacturing Industries in India: An Analytical Assessment," International Journal of Economics and Financial Issues, Econjournals, vol. 2(1), pages 54-70.
    14. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    15. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeinab Zanjani & Pedro Macedo & Isabel Soares, 2021. "Investigating Carbon Emissions from Electricity Generation and GDP Nexus Using Maximum Entropy Bootstrap: Evidence from Oil-Producing Countries in the Middle East," Energies, MDPI, vol. 14(12), pages 1-22, June.
    2. Destek, Mehmet Akif & Aydın, Sercan, 2021. "An Empirical Note on Tourism and Sustainable Development Nexus," MPRA Paper 114219, University Library of Munich, Germany.
    3. Jinjin Zhou & Zenglin Ma & Taoyuan Wei & Chang Li, 2021. "Threshold Effect of Economic Growth on Energy Intensity—Evidence from 21 Developed Countries," Energies, MDPI, vol. 14(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bella & Carla Massidda & Ivan Etzo, 2013. "A Panel Estimation of the Relationship between Income, Electric Power Consumption and CO2 Emissions," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 59(2), pages 149-166.
    2. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    3. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    4. Panagiotis Nikolaos Fotis & Victoria Pekka, 2017. "The effect of renewable energy use and economic growth on pollution in the EUROZONE," Economics and Business Letters, Oviedo University Press, vol. 6(3), pages 88-99.
    5. Roxana Pincheira & Felipe Zuniga & Pablo Neudorfer, 2021. "Carbon Kuznets curve: a dynamic empirical approach for a panel data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5523-5541, December.
    6. Pham T. T. Trinh & Bui T. T. My, 2023. "The impact of world oil price shocks on macroeconomic variables in Vietnam: the transmission through domestic oil price," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(1), pages 67-87, May.
    7. Lutz Kilian, 2010. "Oil Price Shocks, Monetary Policy and Stagflation," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    8. Alan S. Blinder & Jeremy B. Rudd, 2013. "The Supply-Shock Explanation of the Great Stagflation Revisited," NBER Chapters, in: The Great Inflation: The Rebirth of Modern Central Banking, pages 119-175, National Bureau of Economic Research, Inc.
    9. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    10. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    11. Taiwo Akinlo, 2024. "Oil price and real sector in oil-importing countries: an asymmetric analysis of sub-Saharan Africa," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-27, February.
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    13. Selien De Schryder and Gert Peersman, 2015. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    15. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    16. Engemann, Kristie M. & Kliesen, Kevin L. & Owyang, Michael T., 2011. "Do Oil Shocks Drive Business Cycles? Some U.S. And International Evidence," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 498-517, November.
    17. Zaman, Khalid & Moemen, Mitwali Abd-el., 2017. "Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1119-1130.
    18. Magnani, Natalia & Vaona, Andrea, 2013. "Regional spillover effects of renewable energy generation in Italy," Energy Policy, Elsevier, vol. 56(C), pages 663-671.
    19. Combes, Jean-Louis & Lesuisse, Pierre, 2022. "Inflation and unemployment, new insights during the EMU accession," International Economics, Elsevier, vol. 172(C), pages 124-142.
    20. Yue Dou & Muhammad Shahbaz & Kangyin Dong & Xiucheng Dong, 2022. "How natural disasters affect carbon emissions: the global case," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1875-1901, September.

    More about this item

    Keywords

    Energy intensity; economic growth; Energy savings.;
    All these keywords.

    JEL classification:

    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity
    • Q00 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - General
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2021-02-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.