IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2018-06-17.html
   My bibliography  Save this article

Nodal Pricing: The Theory and Evidence of Indonesia Power System

Author

Listed:
  • Dzikri Firmansyah Hakam

    (Centre for Energy, Petroleum and Mineral Law and Policy. University of Dundee, Scotland, United Kingdom,)

Abstract

This research presents a stylised nodal pricing model of Indonesia power system with engineering-economic constraints. The modelling in this research adopts the 8 nodes stylised model for the Sumatra power system, by incorporating generation, transmission and power system stability constraint. Nodal pricing analysis is performed based on Direct Current (DC) Optimal Power Flow (OPF) and marginal cost calculation in each node. This research is the first ever to estimate nodal prices in the Indonesian electricity market. Nodal pricing model in this paper provides a proper investment signals for Indonesian stakeholder in performing generation expansion planning.

Suggested Citation

  • Dzikri Firmansyah Hakam, 2018. "Nodal Pricing: The Theory and Evidence of Indonesia Power System," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 135-147.
  • Handle: RePEc:eco:journ2:2018-06-17
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/6747/4001
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/6747/4001
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Macatangay, Rafael Emmanuel A., 1998. "Space-time prices of wholesale electricity in England and Wales," Utilities Policy, Elsevier, vol. 7(3), pages 163-188, November.
    2. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    3. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    4. Dzikri Firmansyah Hakam & Ayodele O. Asekomeh, 2018. "Gas Monetisation Intricacies: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 174-181.
    5. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.
    2. Geoffrey Mabea, 2023. "Simulating Generalised Locational Marginal Pricing for Power Markets in East Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 450-460, September.
    3. Hakam, Dzikri Firmansyah, 2019. "Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia," Utilities Policy, Elsevier, vol. 56(C), pages 181-191.
    4. Dzikri Firmansyah Hakam, 2023. "Mitigating Market Power and Promoting Competition in Electricity Markets through a Preventive Approach: The Role of Forward Contracts," Energies, MDPI, vol. 16(8), pages 1-31, April.
    5. Dzikri Firmansyah Hakam & Sudarso Kaderi Wiyono & Nanang Hariyanto, 2020. "Competition in Power Generation: Ex-ante Analysis of Indonesia’s Electricity Market," Energies, MDPI, vol. 13(24), pages 1-20, December.
    6. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzikri Firmansyah Hakam & Sudarso Kaderi Wiyono & Nanang Hariyanto, 2020. "Competition in Power Generation: Ex-ante Analysis of Indonesia’s Electricity Market," Energies, MDPI, vol. 13(24), pages 1-20, December.
    2. Hakam, Dzikri Firmansyah, 2019. "Mitigating the risk of market power abuse in electricity sector restructuring: Evidence from Indonesia," Utilities Policy, Elsevier, vol. 56(C), pages 181-191.
    3. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    4. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    5. Bertsch, Joachim & Hagspiel, Simeon & Just, Lisa, 2016. "Congestion management in power systems - Long-term modeling framework and large-scale application," EWI Working Papers 2015-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    6. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    7. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    8. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    9. Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz, 2016. "European Electricity Grid Infrastructure Expansion in a 2050 Context," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    10. Bjørndal, Endre & Bjørndal, Mette & Gribkovskaia, Victoria, 2014. "A Nodal Pricing Model for the Nordic Electricity Market," Discussion Papers 2014/43, Norwegian School of Economics, Department of Business and Management Science.
    11. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    12. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    13. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    14. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    15. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    16. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    17. Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
    18. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    19. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    20. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," Energy Economics, Elsevier, vol. 60(C), pages 176-185.

    More about this item

    Keywords

    nodal pricing; Sumatra power system; stylised model;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D41 - Microeconomics - - Market Structure, Pricing, and Design - - - Perfect Competition
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D60 - Microeconomics - - Welfare Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2018-06-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.