IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2014_043.html
   My bibliography  Save this paper

A Nodal Pricing Model for the Nordic Electricity Market

Author

Listed:
  • Bjørndal, Endre

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Bjørndal, Mette

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Gribkovskaia, Victoria

    (Dept. of Business and Management Science, Norwegian School of Economics)

Abstract

In the Nordic day-ahead electricity market zonal pricing or market splitting is used for relieving congestion between a predetermined set of bidding areas. This congestion management method represents an aggregation of individual connection points into bidding areas, and flows from the actual electricity network are only partly represented in the market clearing. Because of several strained situations in the power system during 2009 and 2010, changes in the congestion management method have been considered by the Norwegian regulator. In this paper we discuss nodal pricing in the Nordic power market, and compare it to optimal and simplified zonal pricing, the latter being used in today’s market. A model of the Nordic electricity market is presented together with a discussion of the calibration of actual market data for four hourly case studies with different load and import/exports to the Nordic area. The market clearing optimization model incorporates thermal and security flow constraints. We analyze the effects on prices and grid constraints and quantify the benefits and inefficiencies of the different methods. We find that the price changes with nodal pricing may not be dramatic, although in cases where intra-zonal constraints are badly represented by the aggregate transfer capacities in the simplified zonal model the nodal prices may be considerably higher on average and vary more than the simplified zonal prices. On the other hand nodal prices may vary less than the simplified zonal prices if aggregate transfer capacities are set too tightly. Allowing for more prices in the Nordic power market would make dealing with capacity limits easier and more transparent.

Suggested Citation

  • Bjørndal, Endre & Bjørndal, Mette & Gribkovskaia, Victoria, 2014. "A Nodal Pricing Model for the Nordic Electricity Market," Discussion Papers 2014/43, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2014_043
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/273334
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    2. Bjorndal, Mette & Jornsten, Kurt, 2007. "Benefits from coordinating congestion management--The Nordic power market," Energy Policy, Elsevier, vol. 35(3), pages 1978-1991, March.
    3. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "Efficient pricing for European electricity networks - The theory of nodal pricing applied to feeding-in wind in Germany," Utilities Policy, Elsevier, vol. 16(4), pages 284-291, December.
    4. Harvey, Scott M. & Hogan, William W. & Pope, Susan L., 1996. "Transmission capacity reservations implemented through a spot market with transmission congestion contracts," The Electricity Journal, Elsevier, vol. 9(9), pages 42-55, November.
    5. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    6. Burstedde, Barbara, 2012. "From Nodal to Zonal Pricing - A Bottom-Up Approach to the Second-Best," EWI Working Papers 2012-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Wu, Felix & Varaiya, Pravin & Spiller, Pablo & Oren, Shmuel, 1996. "Folk Theorems on Transmission Access: Proofs and Counterexamples," Journal of Regulatory Economics, Springer, vol. 10(1), pages 5-23, July.
    8. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    9. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    10. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Bert Willems & Guido Pepermans, 2003. "Regulating transmission in a spatial oligopoly: a numerical illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0314, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    12. Chao, Hung-Po & Peck, Stephen, 1996. "A Market Mechanism for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 10(1), pages 25-59, July.
    13. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    14. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    2. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Zakeri, Golbon, 2016. "Congestion Management in a Stochastic Dispatch Model for Electricity Markets," Discussion Papers 2016/12, Norwegian School of Economics, Department of Business and Management Science.
    3. Ettore Bompard & Shaghayegh Zalzar & Tao Huang & Arturs Purvins & Marcelo Masera, 2018. "Baltic Power Systems’ Integration into the EU Market Coupling under Different Desynchronization Schemes: A Comparative Market Analysis," Energies, MDPI, vol. 11(8), pages 1-15, July.
    4. Cristian Bovo & Valentin Ilea & Enrico Maria Carlini & Mauro Caprabianca & Federico Quaglia & Luca Luzi & Giuseppina Nuzzo, 2021. "Optimal Computation of Network Indicators for Electricity Market Bidding Zones Configuration Considering Explicit N-1 Security Constraints," Energies, MDPI, vol. 14(14), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    2. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    3. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    4. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    5. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    7. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    8. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    9. Holmberg, P. & Lazarczyk, E., 2012. "Congestion management in electricity networks: Nodal, zonal and discriminatory pricing," Cambridge Working Papers in Economics 1219, Faculty of Economics, University of Cambridge.
    10. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    11. Blázquez De Paz, Mario, 2017. "Production or Transmission Investments? A Comparative Analysis," Working Paper Series 1158, Research Institute of Industrial Economics.
    12. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    13. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    14. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    15. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    16. Bertsch, Joachim & Hagspiel, Simeon & Just, Lisa, 2016. "Congestion management in power systems - Long-term modeling framework and large-scale application," EWI Working Papers 2015-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    18. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    19. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    20. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    More about this item

    Keywords

    Nodal pricing; Zonal pricing; Congestion management; Electricity market simulation;
    All these keywords.

    JEL classification:

    • Q00 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2014_043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.