IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2015-04-24.html
   My bibliography  Save this article

Dynamics of Switching from Polluting Resources to Green Technologies

Author

Listed:
  • Supratim Das Gupta

    (University of South Carolina, Columbia, SC, USA and University of Guanajuato, Guanajuato, Mexico.)

Abstract

We have total energy produced by a firm using a non-renewable resource and a perfect substitute backstop. The average cost of the backstop is significantly higher relative to the non-renewable resource initially; average backstop costs are modeled to fall with investments in knowledge. Investments in knowledge are thought to bring about more efficient techniques to use alternative energies (better technical know-how for wind, solar) reducing their average costs. The knowledge stock is modeled as an impure public good such that an individual firm only partially benefits from its own knowledge accumulation. We find a firm in equilibrium invests less in the backstop relative to the social planner and that the planner solution also leads to faster exhaustion of the depletable resource. Introducing flow pollution, we find the time of switch to the backstop in the planner solution depends on the relative magnitudes of the average pollution cost and the average cost of the backstop. An increase in the pollution cost implies slower extraction of the exhaustible resource and a later switch (compared to the case without pollution); however for a very high pollution cost, the extraction rate rises and switch to the backstop is made sooner leaving some of the exhaustible resource in the ground. We solve both the models explicitly and use sophisticated numerical techniques in Mathematica.

Suggested Citation

  • Supratim Das Gupta, 2015. "Dynamics of Switching from Polluting Resources to Green Technologies," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1109-1124.
  • Handle: RePEc:eco:journ2:2015-04-24
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/1458/922
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/1458/922
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raouf Boucekkine & Aude Pommeret & Fabien Prieur, 2013. "Technological vs. Ecological Switch and the Environmental Kuznets Curve," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 252-260.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2012. "Optimal Timing of Carbon Capture Policies Under Alternative CCS Cost Functions," TSE Working Papers 12-318, Toulouse School of Economics (TSE).
    4. Boucekkine, Raouf & Saglam, Cagri & Valléee, Thomas, 2004. "Technology Adoption Under Embodiment: A Two-Stage Optimal Control Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 8(2), pages 250-271, April.
    5. Gray, Elie & Grimaud, André, 2010. "Scope of Innovations, Knowledge Spillovers and Growth," TSE Working Papers 10-161, Toulouse School of Economics (TSE).
    6. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    7. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2011. "Would hotelling kill the electric car?," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 281-296, May.
    8. Boucekkine, R. & Pommeret, A. & Prieur, F., 2013. "Optimal regime switching and threshold effects," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2979-2997.
    9. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    10. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    11. Gray, Elie & Grimaud, André, 2010. "Scope of Innovations, Knowledge Spillovers and Growth," LERNA Working Papers 10.11.317, LERNA, University of Toulouse.
    12. Janet Currie & Johannes F. Schmieder, 2009. "Fetal Exposures to Toxic Releases and Infant Health," American Economic Review, American Economic Association, vol. 99(2), pages 177-183, May.
    13. Hung, N. M. & Quyen, N. V., 1993. "On R&D timing under uncertainty : The case of exhaustible resource substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 17(5-6), pages 971-991.
    14. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "Optimal growth under a climate constraint," IDEI Working Papers 798, Institut d'Économie Industrielle (IDEI), Toulouse.
    15. Gray, Elie & Grimaud, André, 2010. "Scope of Innovations, Knowledge Spillovers and Growth," IDEI Working Papers 607, Institut d'Économie Industrielle (IDEI), Toulouse.
    16. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    17. Hartley, Peter & Medlock, Kenneth B., III & Temzelides, Ted & Zhang, Xinya, 2014. "Energy Sector Innovation and Growth," Working Papers 14-009, Rice University, Department of Economics.
    18. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    19. Das Gupta, Supratim, 2015. "Dirty And Clean Technologies," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 47(1), pages 123-145, February.
    20. Raouf Boucekkine & Jacek Krawczyk & Thomas Vallée, 2011. "Environmental quality versus economic performance: A dynamic game approach," Post-Print hal-03193660, HAL.
    21. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    22. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    2. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    3. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    4. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    5. Gilbert Kollenbach, 2019. "Unilateral climate policy and the green paradox: Extraction costs matter," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 1036-1083, August.
    6. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    7. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    8. Ngo Van Long & Fabien Prieur & Klarizze Puzon & Mabel Tidball, 2013. "Markov Perfect Equilibria in Differential Games with Regime Switching Strategies," Working Papers 13-06, LAMETA, Universtiy of Montpellier, revised Jan 2014.
    9. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    10. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    11. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    12. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2015. "Endogenous economic growth, EROI, and transition towards renewable energy," Working Papers 1507, Chaire Economie du climat.
    13. Raouf Boucekkine & Carmen Camacho & Benteng Zou, 2020. "Optimal switching from competition to cooperation: a preliminary exploration," Working Papers halshs-02434786, HAL.
    14. Le, Thanh & Le Van, Cuong, 2018. "Research and development and sustainable growth over alternative types of natural resources," Economic Modelling, Elsevier, vol. 70(C), pages 215-229.
    15. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    16. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    17. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    19. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    20. Raouf BOUCEKKINE & Blanca MARTINEZ & José Ramon RUIZ-TAMARIT, 2013. "Optimal sustainable policies under pollution ceiling: the demographic side," LIDAM Discussion Papers IRES 2013028, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    More about this item

    Keywords

    Exhaustible Resources; Backstop; Knowledge Stock; Investment; Pollution; Numerical Methods;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2015-04-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.