IDEAS home Printed from https://ideas.repec.org/a/caa/jnlage/v59y2013i7id148-2012-agricecon.html
   My bibliography  Save this article

Performance of Swiss dairy farms under provision of public goods

Author

Listed:
  • Phatima MAMARDASHVILI

    (Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland)

  • Dierk SCHMID

    (Research Station Agroscope Reckenholz-Tänikon ART, Ettenhausen, Switzerland)

Abstract

Farmers provide not only agricultural products but also public goods and services. When analyzing farm performance, these different outputs should be modelled separately. In this study, we investigated Swiss dairy farms located in the plain, hill and mountainous regions for the period between 2003 and 2009. For the representation of production technology, we employed a parametric output distance function and modeled particular public goods and services as a separate output. The resulted elasticities of agricultural output coincided with the corresponding shares of this output. However, the elasticities of particular public goods and services were higher than the corresponding shares. This might be related to the fact that this output contains different kinds of direct payments, "production" of which does not require additional inputs or trade-off with other outputs. Our results showed that the level of pro ductivity in the plain region did not depend on the scale of production, but more on the improvement in the technical efficiency. However, in the hill and mountainous regions, there was potential for scale adjustments. Sample farms in these regions showed significant decreasing returns to scale, which suggests that the average farm in these subsamples could improve its productivity by scaling down its production. Our results might also be confirmation of decelerated structural change, since decreasing returns to scale might reflect an obstacle to growth. We found the wide range of the efficiency scores for Swiss farms, which indicates potentials for improvements. Among others, off-farm income as well as high level of ecological services showed significantly positive influence on the technical efficiency of Swiss farms in all three regions.

Suggested Citation

  • Phatima MAMARDASHVILI & Dierk SCHMID, 2013. "Performance of Swiss dairy farms under provision of public goods," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 59(7), pages 300-314.
  • Handle: RePEc:caa:jnlage:v:59:y:2013:i:7:id:148-2012-agricecon
    DOI: 10.17221/148/2012-AGRICECON
    as

    Download full text from publisher

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/148/2012-AGRICECON.html
    Download Restriction: free of charge

    File URL: http://agricecon.agriculturejournals.cz/doi/10.17221/148/2012-AGRICECON.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/148/2012-AGRICECON?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lakner, Sebastian, 2009. "Technical efficiency of organic milk-farms in Germany - the role of subsidies and of regional factors," 2009 Conference, August 16-22, 2009, Beijing, China 51301, International Association of Agricultural Economists.
    2. Konstantinos Giannakas & Richard Schoney & Vangelis Tzouvelekas, 2001. "Technical Efficiency, Technological Change and Output Growth of Wheat Farms in Saskatchewan," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 49(2), pages 135-152, July.
    3. Bokusheva, Raushan & Kumbhakar, Subal C. & Lehmann, Bernard, 2012. "The effect of environmental regulations on Swiss farm productivity," International Journal of Production Economics, Elsevier, vol. 136(1), pages 93-101.
    4. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    5. Erik Mathijs & Liesbet Vranken, 2001. "Human Capital, Gender and Organisation in Transition Agriculture: Measuring and Explaining the Technical Efficiency of Bulgarian and Hungarian Farms," Post-Communist Economies, Taylor & Francis Journals, vol. 13(2), pages 171-187.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    8. Liu, Zinan & Zhuang, Juzhong, 2000. "Determinants of Technical Efficiency in Post-Collective Chinese Agriculture: Evidence from Farm-Level Data," Journal of Comparative Economics, Elsevier, vol. 28(3), pages 545-564, September.
    9. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    10. Suzanne O’Neill & Alan Matthews, 2001. "Technical Change and Efficiency in Irish Agriculture," The Economic and Social Review, Economic and Social Studies, vol. 32(3), pages 263-284.
    11. Wilson, Paul & Hadley, David & Asby, Carol, 2001. "The influence of management characteristics on the technical efficiency of wheat farmers in eastern England," Agricultural Economics, Blackwell, vol. 24(3), pages 329-338, March.
    12. Glynn T. Tonsor & Allen M. Featherstone, 2009. "Production Efficiency of Specialized Swine Producers," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(3), pages 493-510, September.
    13. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    14. Stefan Bojnec & Laure Latruffe, 2009. "Determinants of technical efficiency of Slovenian farms," Post-Communist Economies, Taylor & Francis Journals, vol. 21(1), pages 117-124.
    15. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    16. David Hadley, 2006. "Patterns in Technical Efficiency and Technical Change at the Farm‐level in England and Wales, 1982–2002," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(1), pages 81-100, March.
    17. Laure Latruffe & Kelvin Balcombe & Sophia Davidova & Katarzyna Zawalinska, 2004. "Determinants of technical efficiency of crop and livestock farms in Poland," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1255-1263.
    18. Bernhard Brümmer & Jens‐Peter Loy, 2000. "The Technical Efficiency Impact of Farm Credit Programmes: A Case Study of Northern Germany," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(3), pages 405-418, September.
    19. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    20. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    21. Carol Newman & Alan Matthews, 2007. "Evaluating the Productivity Performance of Agricultural Enterprises in Ireland using a Multiple Output Distance Function Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(1), pages 128-151, February.
    22. Barry K. Goodwin & Ashok K. Mishra, 2004. "Farming Efficiency and the Determinants of Multiple Job Holding by Farm Operators," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 722-729.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamardashvili, Phatima & Bokusheva, Raushan & Schmid, Dierk, 2014. "Heterogeneous Farm Output and Technical Efficiency Estimates," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(1).
    2. Mamardashvili, Phatima & Bokusheva, Raushan & Schmid, Dierk, 2014. "Heterogeneous Farm Output and Technical Efficiency Estimates," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(01), pages 1-15, March.
    3. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.
    4. Ali D. Cagdas & Scott R. Jeffrey & Elwin G. Smith & Peter C. Boxall, 2016. "Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 455-477, September.
    5. Stefan Bojnec & Laure Latruffe, 2009. "Determinants of technical efficiency of Slovenian farms," Post-Communist Economies, Taylor & Francis Journals, vol. 21(1), pages 117-124.
    6. Latruffe, Laure & Bravo-Ureta, Boris E. & Moreira, Victor H. & Desjeux, Yann & Dupraz, Pierre, 2012. "Productivity and Subsidies in the European Union: An Analysis for Dairy Farms Using Input Distance Frontiers," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126846, International Association of Agricultural Economists.
    7. Maria Martinez Cillero & Fiona Thorne & Michael Wallace & James Breen & Thia Hennessy, 2018. "The Effects of Direct Payments on Technical Efficiency of Irish Beef Farms: A Stochastic Frontier Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 669-687, September.
    8. Basurto Hernandez, Saul & Maddison, David & Banerjee, Anindya, 2018. "The effect of PROCAMPO on farms’ technical efficiency: A Stochastic Frontier Analysis," 2018 Annual Meeting, August 5-7, Washington, D.C. 274376, Agricultural and Applied Economics Association.
    9. Narangerel Ganbold & Shah Fahad & Hua Li & Tumendemberel Gungaa, 2022. "An evaluation of subsidy policy impacts, transient and persistent technical efficiency: A case of Mongolia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9223-9242, July.
    10. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    11. Bachev, Hrabrin & Koteva, Nina & Ivanov, Bojidar & Mitova, Dilyana & Boevski, Ivan & Terziev, Dimitar & Dimova, Nadejda & Dimitrova, Reneta & Marinov, Petar & Zvyatkova, Daniela & Sarov, Angel & Koste, 2021. "Холистичен Подход За Дефиниране, Оценяване И Подобряване На Конкурентоспособността На Земеделските Стопанства В България [A holistic framework for defining, evaluating, and improving the competitiv," MPRA Paper 111498, University Library of Munich, Germany.
    12. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    13. Frýd, Lukáš & Sokol, Ondřej, 2021. "Relationships between technical efficiency and subsidies for Czech farms: A two-stage robust approach," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    14. Lajos Zoltan Bakucs & Laure Latruffe & Imre Ferto & Jozsef Fogarasi, 2006. "Technical efficiency of Hungarian farms before and after accession," Post-Print hal-02285626, HAL.
    15. Latruffe, Laure & Bravo-Ureta, Boris E. & Moreira, Victor H. & Desjeux, Yann & Dupraz, Pierre, 2011. "Productivity and Subsidies in European Union Countries: An Analysis for Dairy Farms Using Input Distance Frontiers," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114396, European Association of Agricultural Economists.
    16. Zhu, Xueqin & Demeter, Robert Milan & Oude Lansink, Alfons G.J.M., 2008. "Competitiveness of dairy farms in three countries: the role of CAP subsidies," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44143, European Association of Agricultural Economists.
    17. Ripoll-Zarraga, Ane Elixabete & Huderek-Glapska, Sonia, 2021. "Airports’ managerial human capital, ownership, and efficiency," Journal of Air Transport Management, Elsevier, vol. 92(C).
    18. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    19. Marzec, Jerzy & Pisulewski, Andrzej, 2019. "The Measurement of Time Varying Technical Efficiency and Productivity Change in Polish Crop Farms," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 68(1), March.
    20. Roengchai Tansuchat, 2023. "A Copula-Based Meta-Stochastic Frontier Analysis for Comparing Traditional and HDPE Geomembranes Technology in Sea Salt Farming among Farmers in Phetchaburi, Thailand," Agriculture, MDPI, vol. 13(4), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlage:v:59:y:2013:i:7:id:148-2012-agricecon. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.