IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i1n26.html
   My bibliography  Save this article

A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome

Author

Listed:
  • Gruber Susan

    (University of California, Berkeley)

  • van der Laan Mark J.

    (University of California, Berkeley)

Abstract

Targeted maximum likelihood estimation of a parameter of a data generating distribution, known to be an element of a semi-parametric model, involves constructing a parametric model through an initial density estimator with parameter ? representing an amount of fluctuation of the initial density estimator, where the score of this fluctuation model at ? = 0 equals the efficient influence curve/canonical gradient. The latter constraint can be satisfied by many parametric fluctuation models since it represents only a local constraint of its behavior at zero fluctuation. However, it is very important that the fluctuations stay within the semi-parametric model for the observed data distribution, even if the parameter can be defined on fluctuations that fall outside the assumed observed data model. In particular, in the context of sparse data, by which we mean situations where the Fisher information is low, a violation of this property can heavily affect the performance of the estimator. This paper presents a fluctuation approach that guarantees the fluctuated density estimator remains inside the bounds of the data model. We demonstrate this in the context of estimation of a causal effect of a binary treatment on a continuous outcome that is bounded. It results in a targeted maximum likelihood estimator that inherently respects known bounds, and consequently is more robust in sparse data situations than the targeted MLE using a naive fluctuation model.When an estimation procedure incorporates weights, observations having large weights relative to the rest heavily influence the point estimate and inflate the variance. Truncating these weights is a common approach to reducing the variance, but it can also introduce bias into the estimate. We present an alternative targeted maximum likelihood estimation (TMLE) approach that dampens the effect of these heavily weighted observations. As a substitution estimator, TMLE respects the global constraints of the observed data model. For example, when outcomes are binary, a fluctuation of an initial density estimate on the logit scale constrains predicted probabilities to be between 0 and 1. This inherent enforcement of bounds has been extended to continuous outcomes. Simulation study results indicate that this approach is on a par with, and many times superior to, fluctuating on the linear scale, and in particular is more robust when there is sparsity in the data.

Suggested Citation

  • Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:26
    DOI: 10.2202/1557-4679.1260
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1260
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
    2. van der Laan Mark J. & Polley Eric C & Hubbard Alan E., 2007. "Super Learner," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-23, September.
    3. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    4. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    2. van der Laan Mark J., 2014. "Targeted Estimation of Nuisance Parameters to Obtain Valid Statistical Inference," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 1-29, May.
    3. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    4. Zheng Wenjing & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation of Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-40, January.
    5. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    7. Hai Zhu & Hongjian Zhu, 2023. "Covariate‐adjusted response‐adaptive designs based on semiparametric approaches," Biometrics, The International Biometric Society, vol. 79(4), pages 2895-2906, December.
    8. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    9. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    10. Gruber Susan & van der Laan Mark J., 2012. "Targeted Minimum Loss Based Estimation of a Causal Effect on an Outcome with Known Conditional Bounds," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-18, July.
    11. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    12. Gruber Susan & van der Laan Mark J., 2010. "An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, May.
    13. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    14. Bezawit Adugna Bahru & Manfred Zeller, 2022. "Gauging the impact of Ethiopia’s productive safety net programme on agriculture: Application of targeted maximum likelihood estimation approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 257-276, February.
    15. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    16. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    17. Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
    18. van der Laan Mark J. & Petersen Maya & Zheng Wenjing, 2013. "Estimating the Effect of a Community-Based Intervention with Two Communities," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 83-106, June.
    19. Rosenblum Michael & van der Laan Mark J., 2010. "Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    2. Gruber Susan & van der Laan Mark J., 2010. "An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, May.
    3. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    4. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    5. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    6. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    7. Wang, Hui & Rose, Sherri & van der Laan, Mark J., 2011. "Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 792-796, July.
    8. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    9. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
    10. Turner, Alex J. & Fichera, Eleonora & Sutton, Matt, 2021. "The effects of in-utero exposure to influenza on mental health and mortality risk throughout the life-course," Economics & Human Biology, Elsevier, vol. 43(C).
    11. François Fall & Akim Almouksit, 2016. "The impact of formal financing on small informal enterprises in Comoros," Working Papers hal-01566389, HAL.
    12. Amarendra Sharma, 2019. "Indira Awas Yojana and Housing Adequacy: An Evaluation using Propensity Score Matching," ASARC Working Papers 2019-05, The Australian National University, Australia South Asia Research Centre.
    13. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    14. Shapiro, Joseph & Trevino, Jorge Moreno, 2004. "Compensatory education for disadvantaged Mexican students : an impact evaluation using propensity score matching," Policy Research Working Paper Series 3334, The World Bank.
    15. Nathalie Greenan & Pierre-Jean Messe, 2018. "Transmission of vocational skills in the second part of careers: the effect of ICT and management changes," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 52(1), pages 1-16, December.
    16. Kube, Roland & von Graevenitz, Kathrine & Löschel, Andreas & Massier, Philipp, 2019. "Do voluntary environmental programs reduce emissions? EMAS in the German manufacturing sector," Energy Economics, Elsevier, vol. 84(S1).
    17. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    18. Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
    19. Anjana Susarla & Anitesh Barua, 2011. "Contracting Efficiency and New Firm Survival in Markets Enabled by Information Technology," Information Systems Research, INFORMS, vol. 22(2), pages 306-324, June.
    20. Slottje, Daniel J. & Millimet, Daniel L. & Buchanan, Michael J., 2007. "Econometric analysis of copyrights," Journal of Econometrics, Elsevier, vol. 139(2), pages 303-317, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.