IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v2y2006i1n11.html
   My bibliography  Save this article

Targeted Maximum Likelihood Learning

Author

Listed:
  • van der Laan Mark J.

    (Division of Biostatistics, School of Public Health, University of California, Berkeley)

  • Rubin Daniel

    (University of California, Berkeley)

Abstract

Suppose one observes a sample of independent and identically distributed observations from a particular data generating distribution. Suppose that one is concerned with estimation of a particular pathwise differentiable Euclidean parameter. A substitution estimator evaluating the parameter of a given likelihood based density estimator is typically too biased and might not even converge at the parametric rate: that is, the density estimator was targeted to be a good estimator of the density and might therefore result in a poor estimator of a particular smooth functional of the density. In this article we propose a one step (and, by iteration, k-th step) targeted maximum likelihood density estimator which involves 1) creating a hardest parametric submodel with parameter epsilon through the given density estimator with score equal to the efficient influence curve of the pathwise differentiable parameter at the density estimator, 2) estimating epsilon with the maximum likelihood estimator, and 3) defining a new density estimator as the corresponding update of the original density estimator. We show that iteration of this algorithm results in a targeted maximum likelihood density estimator which solves the efficient influence curve estimating equation and thereby yields a locally efficient estimator of the parameter of interest, under regularity conditions. In particular, we show that, if the parameter is linear and the model is convex, then the targeted maximum likelihood estimator is often achieved in the first step, and it results in a locally efficient estimator at an arbitrary (e.g., heavily misspecified) starting density.We also show that the targeted maximum likelihood estimators are now in full agreement with the locally efficient estimating function methodology as presented in Robins and Rotnitzky (1992) and van der Laan and Robins (2003), creating, in particular, algebraic equivalence between the double robust locally efficient estimators using the targeted maximum likelihood estimators as an estimate of its nuisance parameters, and targeted maximum likelihood estimators. In addition, it is argued that the targeted MLE has various advantages relative to the current estimating function based approach. We proceed by providing data driven methodologies to select the initial density estimator for the targeted MLE, thereby providing data adaptive targeted maximum likelihood estimation methodology. We illustrate the method with various worked out examples.

Suggested Citation

  • van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
  • Handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:11
    DOI: 10.2202/1557-4679.1043
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1043
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.