IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v8y2012i1n3.html
   My bibliography  Save this article

Targeted Maximum Likelihood Estimation of Natural Direct Effects

Author

Listed:
  • Zheng Wenjing

    (University of California, Berkeley)

  • van der Laan Mark J.

    (University of California, Berkeley)

Abstract

In many causal inference problems, one is interested in the direct causal effect of an exposure on an outcome of interest that is not mediated by certain intermediate variables. Robins and Greenland (1992) and Pearl (2001) formalized the definition of two types of direct effects (natural and controlled) under the counterfactual framework. The efficient scores (under a nonparametric model) for the various natural effect parameters and their general robustness conditions, as well as an estimating equation based estimator using the efficient score, are provided in Tchetgen Tchetgen and Shpitser (2011b). In this article, we apply the targeted maximum likelihood framework of van der Laan and Rubin (2006) and van der Laan and Rose (2011) to construct a semiparametric efficient, multiply robust, substitution estimator for the natural direct effect which satisfies the efficient score equation derived in Tchetgen Tchetgen and Shpitser (2011b). We note that the robustness conditions in Tchetgen Tchetgen and Shpitser (2011b) may be weakened, thereby placing less reliance on the estimation of the mediator density. More precisely, the proposed estimator is asymptotically unbiased if either one of the following holds: i) the conditional mean outcome given exposure, mediator, and confounders, and the mediated mean outcome difference are consistently estimated; (ii) the exposure mechanism given confounders, and the conditional mean outcome are consistently estimated; or (iii) the exposure mechanism and the mediator density, or the exposure mechanism and the conditional distribution of the exposure given confounders and mediator, are consistently estimated. If all three conditions hold, then the effect estimate is asymptotically efficient. Extensions to the natural indirect effect are also discussed.

Suggested Citation

  • Zheng Wenjing & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation of Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-40, January.
  • Handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:3
    DOI: 10.2202/1557-4679.1361
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1361
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Petersen Maya L, 2008. "Direct Effect Models," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-27, October.
    2. Mark van der Laan & Maya Petersen, 2004. "Estimation of Direct and Indirect Causal Effects in Longitudinal Studies," U.C. Berkeley Division of Biostatistics Working Paper Series 1155, Berkeley Electronic Press.
    3. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    4. Gruber Susan & van der Laan Mark J., 2010. "A Targeted Maximum Likelihood Estimator of a Causal Effect on a Bounded Continuous Outcome," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-18, August.
    5. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    2. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    3. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    4. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    5. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.
    6. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.
    7. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    8. Brooks Jordan C. & van der Laan Mark J. & Singer Daniel E. & Go Alan S., 2013. "Targeted Minimum Loss-Based Estimation of Causal Effects in Right-Censored Survival Data with Time-Dependent Covariates: Warfarin, Stroke, and Death in Atrial Fibrillation," Journal of Causal Inference, De Gruyter, vol. 1(2), pages 235-254, November.
    9. Samuel D. Lendle & Meenakshi S. Subbaraman & Mark J. van der Laan, 2013. "Identification and Efficient Estimation of the Natural Direct Effect among the Untreated," Biometrics, The International Biometric Society, vol. 69(2), pages 310-317, June.
    10. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    11. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
    12. Hsu Yu-Chin & Huber Martin & Lai Tsung-Chih, 2019. "Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    13. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    14. Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gruber Susan & van der Laan Mark J., 2010. "An Application of Collaborative Targeted Maximum Likelihood Estimation in Causal Inference and Genomics," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, May.
    2. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    3. van der Laan Mark J. & Petersen Maya & Zheng Wenjing, 2013. "Estimating the Effect of a Community-Based Intervention with Two Communities," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 83-106, June.
    4. Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
    5. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    6. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    7. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    8. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    9. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    10. Brooks Jordan & van der Laan Mark J. & Go Alan S., 2012. "Targeted Maximum Likelihood Estimation for Prediction Calibration," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-35, October.
    11. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    12. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    13. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    14. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    15. Stitelman Ori M & van der Laan Mark J., 2010. "Collaborative Targeted Maximum Likelihood for Time to Event Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-46, June.
    16. Bezawit Adugna Bahru & Manfred Zeller, 2022. "Gauging the impact of Ethiopia’s productive safety net programme on agriculture: Application of targeted maximum likelihood estimation approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 257-276, February.
    17. Wang, Hui & Rose, Sherri & van der Laan, Mark J., 2011. "Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 792-796, July.
    18. Hai Zhu & Hongjian Zhu, 2023. "Covariate‐adjusted response‐adaptive designs based on semiparametric approaches," Biometrics, The International Biometric Society, vol. 79(4), pages 2895-2906, December.
    19. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    20. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.