IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v63y2009i2p183-212.html
   My bibliography  Save this article

Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters

Author

Listed:
  • Eugen Ursu
  • Pierre Duchesne

Abstract

We introduce a class of multivariate seasonal time series models with periodically varying parameters, abbreviated by the acronym SPVAR. The model is suitable for multivariate data, and combines a periodic autoregressive structure and a multiplicative seasonal time series model. The stationarity conditions (in the periodic sense) and the theoretical autocovariance functions of SPVAR stochastic processes are derived. Estimation and checking stages are considered. The asymptotic normal distribution of the least squares estimators of the model parameters is established, and the asymptotic distributions of the residual autocovariance and autocorrelation matrices in the class of SPVAR time series models are obtained. In order to check model adequacy, portmanteau test statistics are considered and their asymptotic distributions are studied. A simulation study is briefly discussed to investigate the finite‐sample properties of the proposed test statistics. The methodology is illustrated with a bivariate quarterly data set on travelers entering in to Canada.

Suggested Citation

  • Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
  • Handle: RePEc:bla:stanee:v:63:y:2009:i:2:p:183-212
    DOI: 10.1111/j.1467-9574.2009.00417.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2009.00417.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2009.00417.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    2. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    3. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    4. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    5. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    6. H. Peter Boswijk & Philip Hans Franses, 1996. "Unit Roots In Periodic Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 221-245, May.
    7. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    8. Richard Paap & Philip Hans Franses, 1999. "On trends and constants in periodic autoregressions," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 271-286.
    9. Basawa, I. V. & Lund, Robert & Shao, Qin, 2004. "First-order seasonal autoregressive processes with periodically varying parameters," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 299-306, May.
    10. Osborn, Denise R, 1988. "Seasonality and Habit Persistence in a Life Cycle Model of Consumptio n," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(4), pages 255-266, October-D.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ursu, Eugen & Duchesne, Pierre, 2009. "On multiplicative seasonal modelling for vector time series," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2045-2052, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    3. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    4. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.
    5. del Barrio Castro, Tomás, 2021. "Testing for the cointegration rank between Periodically Integrated processes," MPRA Paper 106603, University Library of Munich, Germany, revised 2021.
    6. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    7. Zou, Nan & Politis, Dimitris N., 2021. "Bootstrap seasonal unit root test under periodic variation," Econometrics and Statistics, Elsevier, vol. 19(C), pages 1-21.
    8. del Barrio Castro Tomás & Osborn Denise R, 2011. "Nonparametric Tests for Periodic Integration," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-35, February.
    9. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    10. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    11. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    12. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    13. Clements, Michael & Smith, Jeremy, 1997. "Forecasting Seasonal Uk Consumption Components," Economic Research Papers 268761, University of Warwick - Department of Economics.
    14. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.
    15. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    16. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    17. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    18. Tomás del Barrio Castro & Gianluca Cubadda & Denise R. Osborn, 2022. "On cointegration for processes integrated at different frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 412-435, May.
    19. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    20. Eiji Kurozumi, 2002. "Testing For Periodic Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 243-270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:63:y:2009:i:2:p:183-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.