IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i4p863-886.html
   My bibliography  Save this article

Modelling fuel injector spray characteristics in jet engines by using vine copulas

Author

Listed:
  • Maximilian Coblenz
  • Simon Holz
  • Hans‐Jörg Bauer
  • Oliver Grothe
  • Rainer Koch

Abstract

The emission requirements for jet engines are becoming more stringent and the combustion process determines pollutant emissions. Therefore, we model the distribution of fuel drops generated by a fuel injector in a jet engine, which can be assumed to be a five‐dimensional problem in terms of drop size, x‐position, y‐position, x‐velocity and y‐velocity. The data are generated by numerical simulations of the fuel atomization process for several jet engine operating conditions. In combustion simulations, the variables are usually assumed to be independent at the start of the simulation, which is clearly not so as our data show. The dependence between some of the variables is non‐monotone and asymmetric, which makes the modelling task difficult. Our aim is to provide a realistic parametric model for the dependence structure. For this, we employ vine copulas which provide a flexible way to construct a multivariate distribution function. However, we need to use non‐standard bivariate copulas as building blocks. Using this copula representation enables us to create realistic samples of fuel spray droplets which improve the prediction of the combustion process and the pollutant emissions. Moreover, this approach is significantly faster than solving the set of differential equations describing fuel disintegration.

Suggested Citation

  • Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:863-886
    DOI: 10.1111/rssc.12421
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12421
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hohsuk Noh & Anouar El Ghouch & Taoufik Bouezmarni, 2013. "Copula-Based Regression Estimation and Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 676-688, June.
    2. Cornelia Savu & Mark Trede, 2010. "Hierarchies of Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 295-304.
    3. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    4. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    5. Luciana Dalla Valle & Fabrizio Leisen & Luca Rossini, 2018. "Bayesian non‐parametric conditional copula estimation of twin data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 523-548, April.
    6. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    7. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    8. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    9. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    10. Simon Holz & Samuel Braun & Geoffroy Chaussonnet & Rainer Koch & Hans-Jörg Bauer, 2019. "Close Nozzle Spray Characteristics of a Prefilming Airblast Atomizer," Energies, MDPI, vol. 12(14), pages 1-22, July.
    11. Daniel Berg, 2009. "Copula goodness-of-fit testing: an overview and power comparison," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 675-701.
    12. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    13. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    14. Holger Dette & Ria Van Hecke & Stanislav Volgushev, 2014. "Some Comments on Copula-Based Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1319-1324, September.
    15. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    16. Noh, Hohsuk & El Ghouch, Anouar & Bouezmarni, Taoufik, 2013. "Copula-Based Regression Estimation and Inference," LIDAM Reprints ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    18. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    19. Sun Wei & Rachev Svetlozar & Stoyanov Stoyan V. & Fabozzi Frank J., 2008. "Multivariate Skewed Student's t Copula in the Analysis of Nonlinear and Asymmetric Dependence in the German Equity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Wicker & Cihan Ates & Max Okraschevski & Simon Holz & Rainer Koch & Hans-Jörg Bauer, 2023. "Modeling Multivariate Spray Characteristics with Gaussian Mixture Models," Energies, MDPI, vol. 16(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    2. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    3. Yousaf Ali Khan, 2022. "Modeling Dependent Structure Among Micro-Economics Variables Through COPAR (1)-Model in Pakistan," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 257-279, March.
    4. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    5. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    6. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    7. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    8. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    9. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    10. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    11. Paul R. Dewick & Shuangzhe Liu & Yonghui Liu & Tiefeng Ma, 2023. "Elliptical and Skew-Elliptical Regression Models and Their Applications to Financial Data Analytics," JRFM, MDPI, vol. 16(7), pages 1-20, June.
    12. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    13. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    14. Zhu, Kailun & Kurowicka, Dorota & Nane, Gabriela F., 2021. "Simplified R-vine based forward regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    15. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    16. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    17. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    18. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    19. Chang, Bo & Joe, Harry, 2019. "Prediction based on conditional distributions of vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 45-63.
    20. Hemei Li & Zhenya Liu & Shixuan Wang, 2022. "Vines climbing higher: Risk management for commodity futures markets using a regular vine copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2438-2457, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:863-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.