IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1501-1521.html
   My bibliography  Save this article

Stronger instruments and refined covariate balance in an observational study of the effectiveness of prompt admission to intensive care units

Author

Listed:
  • Luke Keele
  • Steve Harris
  • Samuel D. Pimentel
  • Richard Grieve

Abstract

Instrumental variable methods, subject to appropriate identification assumptions, enable consistent estimation of causal effects in the presence of unobserved confounding. Near–far matching has been proposed as one analytic method to improve inference by strengthening the effect of the instrument on the exposure and balancing observable characteristics between groups of subjects with low and high values of the instrument. However, in settings with hierarchical data (e.g. patients nested within hospitals), or where several covariate interactions must be balanced, conventional near–far matching algorithms may fail to achieve the requisite covariate balance. We develop a new matching algorithm, that combines near–far matching with refined covariate balance, to balance large numbers of nominal covariates while also strengthening the instrumental variable. This extension of near–far matching is motivated by a case‐study that aims to identify the causal effect of prompt admission to an intensive care unit on 7‐day and 28‐day mortality.

Suggested Citation

  • Luke Keele & Steve Harris & Samuel D. Pimentel & Richard Grieve, 2020. "Stronger instruments and refined covariate balance in an observational study of the effectiveness of prompt admission to intensive care units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1501-1521, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1501-1521
    DOI: 10.1111/rssa.12437
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12437
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyunseung Kang & Laura Peck & Luke Keele, 2018. "Inference for instrumental variables: a randomization inference approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1231-1254, October.
    2. Small, Dylan S & Rosenbaum, Paul R, 2008. "War and Wages," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 924-933.
    3. Dan Yang & Dylan S. Small & Jeffrey H. Silber & Paul R. Rosenbaum, 2012. "Optimal Matching with Minimal Deviation from Fine Balance in a Study of Obesity and Surgical Outcomes," Biometrics, The International Biometric Society, vol. 68(2), pages 628-636, June.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    6. Rosenbaum, Paul R., 2005. "Heterogeneity and Causality: Unit Heterogeneity and Design Sensitivity in Observational Studies," The American Statistician, American Statistical Association, vol. 59, pages 147-152, May.
    7. Samuel D. Pimentel & Rachel R. Kelz & Jeffrey H. Silber & Paul R. Rosenbaum, 2015. "Large, Sparse Optimal Matching With Refined Covariate Balance in an Observational Study of the Health Outcomes Produced by New Surgeons," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 515-527, June.
    8. Lu B. & Zanutto E. & Hornik R. & Rosenbaum P.R., 2001. "Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1245-1253, December.
    9. Wenqi Hu & Carri W. Chan & José R. Zubizarreta & Gabriel J. Escobar, 2018. "An Examination of Early Transfers to the ICU Based on a Physiologic Risk Score," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 531-549, July.
    10. Heller, Ruth & Rosenbaum, Paul R. & Small, Dylan S., 2009. "Split Samples and Design Sensitivity in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1090-1101.
    11. Guido W. Imbens & Paul R. Rosenbaum, 2005. "Robust, accurate confidence intervals with a weak instrument: quarter of birth and education," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 109-126, January.
    12. Diwas Singh KC & Christian Terwiesch, 2012. "An Econometric Analysis of Patient Flows in the Cardiac Intensive Care Unit," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 50-65, January.
    13. Rosenbaum, Paul R. & Ross, Richard N. & Silber, Jeffrey H., 2007. "Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 75-83, March.
    14. Fan Yang & José R. Zubizarreta & Dylan S. Small & Scott Lorch & Paul R. Rosenbaum, 2014. "Dissonant Conclusions When Testing the Validity of an Instrumental Variable," The American Statistician, Taylor & Francis Journals, vol. 68(4), pages 253-263, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishnan, Uttara & Tsaneva, Magda, 2021. "Air pollution and academic performance: Evidence from India," World Development, Elsevier, vol. 146(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siyu Heng & Dylan S. Small & Paul R. Rosenbaum, 2020. "Finding the strength in a weak instrument in a study of cognitive outcomes produced by Catholic high schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 935-958, June.
    2. Wenqi Hu & Carri W. Chan & José R. Zubizarreta & Gabriel J. Escobar, 2018. "An Examination of Early Transfers to the ICU Based on a Physiologic Risk Score," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 531-549, July.
    3. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    4. Bikram Karmakar, 2022. "An approximation algorithm for blocking of an experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1726-1750, November.
    5. Samuel D. Pimentel & Lauren Vollmer Forrow & Jonathan Gellar & Jiaqi Li, 2020. "Optimal matching approaches in health policy evaluations under rolling enrolment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1411-1435, October.
    6. Ruoqi Yu, 2023. "How well can fine balance work for covariate balancing," Biometrics, The International Biometric Society, vol. 79(3), pages 2346-2356, September.
    7. Siyu Heng & Hyunseung Kang & Dylan S. Small & Colin B. Fogarty, 2021. "Increasing power for observational studies of aberrant response: An adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 482-504, July.
    8. Jiayi Liu & Jingui Xie & Kum Khiong Yang & Zhichao Zheng, 2019. "Effects of Rescheduling on Patient No-Show Behavior in Outpatient Clinics," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 780-797, October.
    9. Ruoqi Yu, 2021. "Evaluating and improving a matched comparison of antidepressants and bone density," Biometrics, The International Biometric Society, vol. 77(4), pages 1276-1288, December.
    10. Vladimir Atanasov & Bernard Black, 2021. "The Trouble with Instruments: The Need for Pretreatment Balance in Shock-Based Instrumental Variable Designs," Management Science, INFORMS, vol. 67(2), pages 1270-1302, February.
    11. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Feb 2024.
    12. John E. Core, 2010. "Discussion of Chief Executive Officer Equity Incentives and Accounting Irregularities," Journal of Accounting Research, Wiley Blackwell, vol. 48(2), pages 273-287, May.
    13. Rietveld, Cornelius A. & Webbink, Dinand, 2016. "On the genetic bias of the quarter of birth instrument," Economics & Human Biology, Elsevier, vol. 21(C), pages 137-146.
    14. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    15. Anustubh Agnihotri & Rahul Verma, 2016. "Design-based Approach in Social Science Research," Studies in Indian Politics, , vol. 4(2), pages 241-248, December.
    16. Paloyo, Alfredo R. & Rogan, Sally & Siminski, Peter, 2016. "The effect of supplemental instruction on academic performance: An encouragement design experiment," Economics of Education Review, Elsevier, vol. 55(C), pages 57-69.
    17. Chang, Pao-Li & Lee, Myoung-Jae, 2011. "The WTO trade effect," Journal of International Economics, Elsevier, vol. 85(1), pages 53-71, September.
    18. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    19. Jason J. Sauppe & Sheldon H. Jacobson & Edward C. Sewell, 2014. "Complexity and Approximation Results for the Balance Optimization Subset Selection Model for Causal Inference in Observational Studies," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 547-566, August.
    20. Hochbaum, Dorit S. & Rao, Xu & Sauppe, Jason, 2022. "Network flow methods for the minimum covariate imbalance problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 827-836.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1501-1521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.