IDEAS home Printed from https://ideas.repec.org/a/bla/intfin/v25y2022i3p416-434.html
   My bibliography  Save this article

Spillover effects in Chinese carbon, energy and financial markets

Author

Listed:
  • Guangxi Cao
  • Fei Xie
  • Meijun Ling

Abstract

As China's carbon market continues to develop, its close connection with the financial and energy markets is becoming increasingly apparent. A systematic study of the spillover effects between markets is important, as it can help prevent excessive fluctuations in carbon prices. With this in mind, this study proposes a time‐varying parameter vector autoregression with Lanne–Nyberg decomposition extended joint connectedness approach to analyze quantitatively the spillover effects in the “carbon–energy–financial” system. Empirical results show that a bidirectional spillover effect exists among markets. Not only does the carbon market have the most pronounced return (volatility) linkages with the natural gas (clean energy) market, but the information connected with the energy markets is also more closely linked than with the financial markets. We also find that market fluctuations, caused by the China–US trade conflict and the COVID‐19 pandemic, have increased spillovers in the system.

Suggested Citation

  • Guangxi Cao & Fei Xie & Meijun Ling, 2022. "Spillover effects in Chinese carbon, energy and financial markets," International Finance, Wiley Blackwell, vol. 25(3), pages 416-434, December.
  • Handle: RePEc:bla:intfin:v:25:y:2022:i:3:p:416-434
    DOI: 10.1111/infi.12417
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/infi.12417
    Download Restriction: no

    File URL: https://libkey.io/10.1111/infi.12417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu, Yingying & Salem, Sultan, 2021. "Explosive behaviors in Chinese carbon markets: are there price bubbles in eight pilots?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    3. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    4. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    5. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    8. Dutta, Anupam & Bouri, Elie & Noor, Md Hasib, 2018. "Return and volatility linkages between CO2 emission and clean energy stock prices," Energy, Elsevier, vol. 164(C), pages 803-810.
    9. Coelho, António & Iria, José & Soares, Filipe, 2021. "Network-secure bidding optimization of aggregators of multi-energy systems in electricity, gas, and carbon markets," Applied Energy, Elsevier, vol. 301(C).
    10. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    11. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
    12. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    13. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    14. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    15. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    16. Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
    17. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    18. Jiang, Wei & Chen, Yunfei, 2022. "The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods," Energy, Elsevier, vol. 246(C).
    19. Markku Lanne & Henri Nyberg, 2016. "Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 595-603, August.
    20. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    21. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    22. Ferreira, Paulo & Almeida, Dora & Dionísio, Andreia & Bouri, Elie & Quintino, Derick, 2022. "Energy markets – Who are the influencers?," Energy, Elsevier, vol. 239(PA).
    23. Sun, Limei & Xiang, Meiqi & Shen, Qing, 2020. "A comparative study on the volatility of EU and China’s carbon emission permits trading markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    24. Lastrapes, William D. & Wiesen, Thomas F.P., 2021. "The joint spillover index," Economic Modelling, Elsevier, vol. 94(C), pages 681-691.
    25. Zhou, Xinxing & Gao, Yan & Wang, Ping & Zhu, Bangzhu & Wu, Zhanchi, 2022. "Does herding behavior exist in China's carbon markets?," Applied Energy, Elsevier, vol. 308(C).
    26. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    27. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    2. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    3. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    4. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    5. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    6. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    7. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    8. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    9. He, Xie & Hamori, Shigeyuki, 2021. "Is volatility spillover enough for investor decisions? A new viewpoint from higher moments," Journal of International Money and Finance, Elsevier, vol. 116(C).
    10. Yang Liu & Xueqing Yang & Mei Wang, 2021. "Global Transmission of Returns among Financial, Traditional Energy, Renewable Energy and Carbon Markets: New Evidence," Energies, MDPI, vol. 14(21), pages 1-32, November.
    11. Juncal Cunado & David Gabauer & Rangan Gupta & Chien-Chiang Lee, 2022. "On the Propagation Mechanism of International Real Interest Rate Spillovers: Evidence from More than 200 Years of Data," Working Papers 202212, University of Pretoria, Department of Economics.
    12. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    13. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. Billah, Mabruk & Amar, Amine Ben & Balli, Faruk, 2023. "The extreme return connectedness between Sukuk and green bonds and their determinants and consequences for investors," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    15. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).
    16. Chuliá, Helena & Muñoz-Mendoza, Jorge A. & Uribe, Jorge M., 2023. "Energy firms in emerging markets: Systemic risk and diversification opportunities," Emerging Markets Review, Elsevier, vol. 56(C).
    17. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    18. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    19. Cunado, Juncal & Chatziantoniou, Ioannis & Gabauer, David & de Gracia, Fernando Perez & Hardik, Marfatia, 2023. "Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures," Journal of Commodity Markets, Elsevier, vol. 30(C).
    20. Mengli Xia & Zhang-Hangjian Chen & Piao Wang, 2022. "Dynamic Risk Spillover Effect between the Carbon and Stock Markets under the Shocks from Exogenous Events," Energies, MDPI, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:intfin:v:25:y:2022:i:3:p:416-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1367-0271 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.