IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v9y2005i1-2p277-287.html
   My bibliography  Save this article

Small is Beautiful U.S. House Size, Resource Use, and the Environment

Author

Listed:
  • Alex Wilson
  • Jessica Boehland

Abstract

As house size increases, resource use in buildings goes up, more land is occupied, increased impermeable surface results in more storm‐water runoff, construction costs rise, and energy consumption increases. In new, single‐family houses constructed in the United States, living area per family member has increased by a factor of 3 since the 1950s. In comparing the energy performance of compact (small) and large single‐family houses, we find that a small house built to only moderate energy‐performance standards uses substantially less energy for heating and cooling than a large house built to very high energy‐performance standards. This article examines some of the trends in single‐family house building in the United States and provides recommendations for downsizing houses to improve quality and resource efficiency.

Suggested Citation

  • Alex Wilson & Jessica Boehland, 2005. "Small is Beautiful U.S. House Size, Resource Use, and the Environment," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 277-287, January.
  • Handle: RePEc:bla:inecol:v:9:y:2005:i:1-2:p:277-287
    DOI: 10.1162/1088198054084680
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/1088198054084680
    Download Restriction: no

    File URL: https://libkey.io/10.1162/1088198054084680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Ann Ingerson, 2011. "Carbon storage potential of harvested wood: summary and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(3), pages 307-323, March.
    3. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    4. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    5. Habert, G. & Bouzidi, Y. & Chen, C. & Jullien, A., 2010. "Development of a depletion indicator for natural resources used in concrete," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 364-376.
    6. Jack Barkenbus, 2013. "Indoor Thermal Comfort: The Behavioral Component," Sustainability, MDPI, vol. 5(4), pages 1-20, April.
    7. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    8. Burgin, Shelley, 2018. "‘Back to the future’? Urban backyards and food self-sufficiency," Land Use Policy, Elsevier, vol. 78(C), pages 29-35.
    9. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    10. Peter Newman, 2014. "Density, the Sustainability Multiplier: Some Myths and Truths with Application to Perth, Australia," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    11. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    13. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    14. Stephan, André & Crawford, Robert H., 2016. "The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings," Energy, Elsevier, vol. 116(P1), pages 1158-1171.
    15. J. Thomas & D. Walton & S. Lamb, 2011. "The Influence of Simulated Home and Neighbourhood Densification on Perceived Liveability," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 104(2), pages 253-269, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:9:y:2005:i:1-2:p:277-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.