IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i1p144-161.html
   My bibliography  Save this article

Chronological change of resource metabolism and decarbonization patterns in Pakistan: Perspectives from a typical developing country

Author

Listed:
  • Izhar Hussain Shah
  • Hung‐Suck Park

Abstract

With economic growth in many developing countries, not all are making similar progress with regard to material and environmental efficiencies. This study examines material use and CO2 emission patterns and intensities from 1971 to 2015 in a typical developing country, Pakistan, and investigates national‐level and multi‐country‐level efficiency improvements using data envelopment analysis. The results are used to derive key policy insights for a sustainable economic transition with higher resource and carbon efficiencies. Results show that material intensity has reduced by 39.1% while CO2 intensity has risen by 21.5% in the country. Pakistan, when compared with its top 10 export countries, was relatively more material and CO2 intensive. National‐level efficiency was found to be low in most of the periods due to material/energy intensive agriculture and industries, low value‐added exports, etc. Insights from the national‐level efficiency analysis indicate that surging CO2 intensities have started to decline since 2010 and the economy has greatly stabilized. Multi‐country analysis revealed that the efficiency gap between Pakistan and its developed export countries (such as the United Kingdom and France) has widened during the study period. Insights from the multi‐country analysis suggest that the economic growth and industrialization improves material and environmental efficiencies to some extent, yet these improvements are not equally distributed among all countries. As a way forward, integrated policies on sustainable resource consumption, carbon mitigation, and economic growth are necessary for accruing higher benefits from rising global trade and resource connectedness.

Suggested Citation

  • Izhar Hussain Shah & Hung‐Suck Park, 2021. "Chronological change of resource metabolism and decarbonization patterns in Pakistan: Perspectives from a typical developing country," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 144-161, February.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:1:p:144-161
    DOI: 10.1111/jiec.13060
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13060
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuo†Hsing Kuo & Cheng†Te Lee & Shang†Fen Wu, 2018. "Environmental Policy And Labour Market Imperfection," Bulletin of Economic Research, Wiley Blackwell, vol. 70(2), pages 175-184, April.
    2. Yang, Hsu-Hao & Chang, Cheng-Yu, 0. "Using DEA window analysis to measure efficiencies of Taiwan's integrated telecommunication firms," Telecommunications Policy, Elsevier, vol. 33(1-2), pages 98-108, February.
    3. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    4. Peh, Kelvin S.-H., 2018. "Truth matters for conservation and the environment," Land Use Policy, Elsevier, vol. 72(C), pages 239-240.
    5. UNCTAD & World Bank, 2018. "Healthy and Safe Working Environment," World Bank Publications - Reports 29475, The World Bank Group.
    6. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    7. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    8. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Hussain Bakhsh Magsi & Tze San Ong & Jo Ann Ho & Ahmad Fahmi Sheikh Hassan, 2018. "Organizational Culture and Environmental Performance," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    11. UNCTAD & World Bank, 2018. "Environmental and Social Impact Assessments," World Bank Publications - Reports 29477, The World Bank Group.
    12. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    13. Peng Zhou & Kim Leng Poh & Beng Wah Ang, 2016. "Data Envelopment Analysis for Measuring Environmental Performance," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 31-49, Springer.
    14. Malik, Zahra & Zaman, Khalid, 2013. "Macroeconomic consequences of terrorism in Pakistan," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1103-1123.
    15. Alraheb, Tammuz H. & Nicolas, Christina & Tarazi, Amine, 2019. "Institutional environment and bank capital ratios," Journal of Financial Stability, Elsevier, vol. 43(C), pages 1-24.
    16. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    17. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    18. Ziolkowska, Jadwiga R. & Ziolkowski, Bozydar, 2015. "Energy efficiency in the transport sector in the EU-27: A dynamic dematerialization analysis," Energy Economics, Elsevier, vol. 51(C), pages 21-30.
    19. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    20. Yang Guo & Jinping Tian & Marian Chertow & Lujun Chen, 2018. "Exploring Greenhouse Gas†Mitigation Strategies in Chinese Eco†Industrial Parks by Targeting Energy Infrastructure Stocks," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 106-120, February.
    21. Behrens, Arno & Giljum, Stefan & Kovanda, Jan & Niza, Samuel, 2007. "The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies," Ecological Economics, Elsevier, vol. 64(2), pages 444-453, December.
    22. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Wei Liu & Jinping Tian & Lujun Chen & Wanying Lu & Yang Gao, 2015. "Environmental Performance Analysis of Eco-Industrial Parks in China: A Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1070-1081, December.
    25. Heming Wang & Seiji Hashimoto & Yuichi Moriguchi & Qiang Yue & Zhongwu Lu, 2012. "Resource Use in Growing China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 481-492, August.
    26. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    27. UNCTAD & World Bank, 2018. "Creating an Enabling Environment," World Bank Publications - Reports 29480, The World Bank Group.
    28. Ennen, David & Batool, Irem, 2018. "Airport efficiency in Pakistan - A Data Envelopment Analysis with weight restrictions," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 205-212.
    29. George E. Halkos & Nickolaos G. Tzeremes & Stavros A. Kourtzidis, 2016. "Measuring Sustainability Efficiency Using a Two-Stage Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1159-1175, October.
    30. James D Ward & Paul C Sutton & Adrian D Werner & Robert Costanza & Steve H Mohr & Craig T Simmons, 2016. "Is Decoupling GDP Growth from Environmental Impact Possible?," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-14, October.
    31. Heinz Schandl & James West, 2012. "Material Flows and Material Productivity in China, Australia, and Japan," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 352-364, June.
    32. Himayatullah Khan & Ehsan Inamullah & Khadija Shams, 2009. "Population, environment and poverty in Pakistan: linkages and empirical evidence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(2), pages 375-392, April.
    33. Lee, Seong Kon & Mogi, Gento, 2018. "Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 472-482.
    34. Fernando Ascensão & Lenore Fahrig & Anthony P. Clevenger & Richard T. Corlett & Jochen A. G. Jaeger & William F. Laurance & Henrique M. Pereira, 2018. "Environmental challenges for the Belt and Road Initiative," Nature Sustainability, Nature, vol. 1(5), pages 206-209, May.
    35. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    36. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    37. Trevor Zink & Roland Geyer, 2017. "Circular Economy Rebound," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 593-602, June.
    38. Karim W. F. Youssef, 2018. "The built environment and public health," Community Development, Taylor & Francis Journals, vol. 49(1), pages 121-122, January.
    39. Neus Sanjuan & Javier Ribal & Gabriela Clemente & Ma Loreto Fenollosa, 2011. "Measuring and Improving Eco‐efficiency Using Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 614-628, August.
    40. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    41. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    42. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
    43. Heinz Schandl & Marina Fischer-Kowalski & Clemens Grunbuhel & Fridolin Krausmann, 2008. "Socio-metabolic Transitions in Developing Asia," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2008-05, CSIRO Sustainable Ecosystems.
    44. Shahbaz, Muhammad, 2013. "Linkages between inflation, economic growth and terrorism in Pakistan," Economic Modelling, Elsevier, vol. 32(C), pages 496-506.
    45. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    2. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    3. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    4. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    5. H. K. Millington & J. E. Lovell & C. A. K. Lovell, 2013. "Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health," CEPA Working Papers Series WP072013, School of Economics, University of Queensland, Australia.
    6. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    7. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    9. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    10. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    11. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    12. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    13. Halkos, George & Tzeremes, Nickolaos, 2011. "A conditional full frontier modelling for analyzing environmental efficiency and economic growth," MPRA Paper 32839, University Library of Munich, Germany.
    14. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    15. Patrick Gasser & Marco Cinelli & Anna Labijak & Matteo Spada & Peter Burgherr & Miłosz Kadziński & Božidar Stojadinović, 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis," Energies, MDPI, vol. 13(7), pages 1-35, March.
    16. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    17. Halkos, George & Petrou, Kleoniki Natalia, 2018. "Assessment of national waste generation in EU Member States’ efficiency," MPRA Paper 84590, University Library of Munich, Germany.
    18. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    19. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    20. Halkos, George & Tzeremes, Nickolaos, 2011. "Does the Kyoto Protocol Agreement matters? An environmental efficiency analysis," MPRA Paper 30652, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:1:p:144-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.