IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1559-1572.html
   My bibliography  Save this article

Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments

Author

Listed:
  • Zichen Ma
  • Shannon W. Davis
  • Yen‐Yi Ho

Abstract

With recent advances in technologies to profile multi‐omics data at the single‐cell level, integrative multi‐omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single‐cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components. However, since each data type usually has a distinct marginal distribution, joint analysis of these changes of associations using multi‐omics data is statistically challenging. In this paper, we propose a flexible copula‐based framework to model covariate‐dependent correlation structures independent of their marginals. In addition, the proposed approach could jointly combine a wide variety of univariate marginal distributions, either discrete or continuous, including the class of zero‐inflated distributions. The performance of the proposed framework is demonstrated through a series of simulation studies. Finally, it is applied to a set of experimental data to investigate the dynamic relationship between single‐cell RNA sequencing, chromatin accessibility, and DNA methylation at different germ layers during mouse gastrulation.

Suggested Citation

  • Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1559-1572
    DOI: 10.1111/biom.13701
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13701
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Chen & Jichun Xie & Hongzhe Li, 2011. "A Penalized Likelihood Approach for Bivariate Conditional Normal Models for Dynamic Co-expression Analysis," Biometrics, The International Biometric Society, vol. 67(1), pages 299-308, March.
    2. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    3. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    4. Yen-Yi Ho & Giovanni Parmigiani & Thomas A. Louis & Leslie M. Cope, 2011. "Modeling Liquid Association," Biometrics, The International Biometric Society, vol. 67(1), pages 133-141, March.
    5. Quan Zhou & Mingwei Liu & Xia Xia & Tongqing Gong & Jinwen Feng & Wanlin Liu & Yang Liu & Bei Zhen & Yi Wang & Chen Ding & Jun Qin, 2017. "A mouse tissue transcription factor atlas," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
    6. Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
    7. Michael S. Smith & Mohamad A. Khaled, 2012. "Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 290-303, March.
    8. Peter Muller & Giovanni Parmigiani & Christian Robert & Judith Rousseau, 2004. "Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 990-1001, December.
    9. Hanqing Liu & Jingtian Zhou & Wei Tian & Chongyuan Luo & Anna Bartlett & Andrew Aldridge & Jacinta Lucero & Julia K. Osteen & Joseph R. Nery & Huaming Chen & Angeline Rivkin & Rosa G. Castanon & Ben C, 2021. "DNA methylation atlas of the mouse brain at single-cell resolution," Nature, Nature, vol. 598(7879), pages 120-128, October.
    10. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    2. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    3. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    4. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    5. Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
    6. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    7. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    8. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," Economic Research Papers 270232, University of Warwick - Department of Economics.
    9. Tianwei Yu, 2018. "A new dynamic correlation algorithm reveals novel functional aspects in single cell and bulk RNA-seq data," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-22, August.
    10. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    11. Juan Wu & Xue Wang & Stephen G. Walker, 2014. "Bayesian Nonparametric Inference for a Multivariate Copula Function," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 747-763, September.
    12. Smith, Michael S. & Kauermann, Göran, 2011. "Bicycle commuting in Melbourne during the 2000s energy crisis: A semiparametric analysis of intraday volumes," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1846-1862.
    13. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    14. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    17. Ruben Loaiza-Maya & Michael Stanley Smith, 2017. "Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series," Papers 1712.09150, arXiv.org, revised Jul 2018.
    18. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    19. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    20. Rebecca Graziani & Sergio Venturini, 2020. "A Bayesian approach to discrete multiple outcome network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1559-1572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.