Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation

Contents:

Author Info

  • Michael S. Smith
  • Mohamad A. Khaled

Abstract

Estimation of copula models with discrete margins can be difficult beyond the bivariate case. We show how this can be achieved by augmenting the likelihood with continuous latent variables, and computing inference using the resulting augmented posterior. To evaluate this, we propose two efficient Markov chain Monte Carlo sampling schemes. One generates the latent variables as a block using a Metropolis--Hastings step with a proposal that is close to its target distribution, the other generates them one at a time. Our method applies to all parametric copulas where the conditional copula functions can be evaluated, not just elliptical copulas as in much previous work. Moreover, the copula parameters can be estimated joint with any marginal parameters, and Bayesian selection ideas can be employed. We establish the effectiveness of the estimation method by modeling consumer behavior in online retail using Archimedean and Gaussian copulas. The example shows that elliptical copulas can be poor at modeling dependence in discrete data, just as they can be in the continuous case. To demonstrate the potential in higher dimensions, we estimate 16-dimensional D-vine copulas for a longitudinal model of usage of a bicycle path in the city of Melbourne, Australia. The estimates reveal an interesting serial dependence structure that can be represented in a parsimonious fashion using Bayesian selection of independence pair-copula components. Finally, we extend our results and method to the case where some margins are discrete and others continuous. Supplemental materials for the article are also available online.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1080/01621459.2011.644501
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

Volume (Year): 107 (2012)
Issue (Month): 497 (March)
Pages: 290-303

as in new window
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:290-303

Contact details of provider:
Web page: http://www.tandfonline.com/UASA20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/UASA20

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Department of Economics Working Papers 2013-12, McMaster University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:290-303. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.