My bibliography
Save this item
Forecasting risk via realized GARCH, incorporating the realized range
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Buyun & Wu, Zhimin, 2025. "Real-time GARCH@CARR: A joint model of returns, realized measure of volatility and current intraday information," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
- Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
- Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
- Shay Kee Tan & Kok Haur Ng & Jennifer So-Kuen Chan, 2022. "Predicting Returns, Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
- Liu, Chen & Wang, Chao & Tran, Minh-Ngoc & Kohn, Robert, 2025. "A long short-term memory enhanced realized conditional heteroskedasticity model," Economic Modelling, Elsevier, vol. 142(C).
- Nguyen, Hien Thi & Nguyen, Hoang & Tran, Minh-Ngoc, 2024. "Deep learning enhanced volatility modeling with covariates," Finance Research Letters, Elsevier, vol. 69(PB).
- Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Jinguan Lin & Yizhi Mao & Hongxia Hao & Guangying Liu, 2025. "Semiparametric Estimation and Application of Realized GARCH Model with Time-Varying Leverage Effect," Mathematics, MDPI, vol. 13(9), pages 1-26, May.
- Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
- Yuta Kurose, 2022. "Bayesian GARCH modeling for return and range," Economics Bulletin, AccessEcon, vol. 42(3), pages 1717-1727.
- Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
- Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
- Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
- Ren, Xiaohang & He, Yue & Liu, Chuanwang & Tao, Lizhu, 2025. "Extreme risk spillovers between SC, WTI and Brent crude oil futures-Evidence from time-varying Granger causality test," Energy, Elsevier, vol. 320(C).
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Chen Liu & Chao Wang & Minh-Ngoc Tran & Robert Kohn, 2023. "Deep Learning Enhanced Realized GARCH," Papers 2302.08002, arXiv.org, revised Oct 2023.
- Didit Budi Nugroho & Adi Setiawan & Takayuki Morimoto, 2025. "Modelling and Forecasting Financial Volatility with Realized GARCH Model: A Comparative Study of Skew- t Distributions Using GRG and MCMC Methods," Econometrics, MDPI, vol. 13(3), pages 1-27, September.
- Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
- Qianli Zhao & Chao Wang & Richard Gerlach & Giuseppe Storti & Lingxiang Zhang, 2024. "Autoencoder Enhanced Realised GARCH on Volatility Forecasting," Papers 2411.17136, arXiv.org.
- Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
- Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
- Richard Gerlach & Chao Wang, 2018. "Semi-parametric Dynamic Asymmetric Laplace Models for Tail Risk Forecasting, Incorporating Realized Measures," Papers 1805.08653, arXiv.org.
Printed from https://ideas.repec.org/r/taf/quantf/v16y2016i4p501-511.html