IDEAS home Printed from https://ideas.repec.org/r/taf/jnlasa/v109y2014i506p828-846.html
   My bibliography  Save this item

EMVS: The EM Approach to Bayesian Variable Selection

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Naveen Naidu Narisetty, 2020. "Discussion," International Statistical Review, International Statistical Institute, vol. 88(2), pages 330-334, August.
  2. Zhao, Kaifeng & Lian, Heng, 2016. "The Expectation–Maximization approach for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 1-11.
  3. Veronika Ročková & Edward George, 2014. "Negotiating multicollinearity with spike-and-slab priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 217-229, August.
  4. Korobilis, Dimitris & Pettenuzzo, Davide, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," MPRA Paper 100165, University Library of Munich, Germany.
  5. M. Marsman & K. Huth & L. J. Waldorp & I. Ntzoufras, 2022. "Objective Bayesian Edge Screening and Structure Selection for Ising Networks," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 47-82, March.
  6. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  7. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  8. Jieun Lee & Gyuhyeong Goh, 2024. "A hybrid deterministic–deterministic approach for high-dimensional Bayesian variable selection with a default prior," Computational Statistics, Springer, vol. 39(3), pages 1659-1681, May.
  9. Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.
  10. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  11. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
  12. Gonzalo García-Donato & María Eugenia Castellanos & Alicia Quirós, 2021. "Bayesian Variable Selection with Applications in Health Sciences," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
  13. Jewson, Jack & Li, Li & Battaglia, Laura & Hansen, Stephen & Rossell, David & Zwiernik, Piotr, 2022. "Graphical model inference with external network data," CEPR Discussion Papers 17638, C.E.P.R. Discussion Papers.
  14. Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
  15. Li Ma, 2015. "Scalable Bayesian Model Averaging Through Local Information Propagation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 795-809, June.
  16. Zhang, Chun-Xia & Xu, Shuang & Zhang, Jiang-She, 2019. "A novel variational Bayesian method for variable selection in logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 1-19.
  17. Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
  18. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
  19. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
  20. Jiyeon Song & Subharup Guha & Yi Li, 2024. "Bayesian Inference for High Dimensional Cox Models with Gaussian and Diffused-Gamma Priors: A Case Study of Mortality in COVID-19 Patients Admitted to the ICU," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 221-249, April.
  21. Veronika Ročková & Edward I. George, 2016. "Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1608-1622, October.
  22. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
  23. Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
  24. Emrah Gecili & Cole Brokamp & Özgür Asar & Eleni‐Rosalina Andrinopoulou & John J. Brewington & Rhonda D. Szczesniak, 2025. "Spike and Slab Regression for Nonstationary Gaussian Linear Mixed Effects Modeling of Rapid Disease Progression," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  25. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
  26. Anindya Bhadra & Jyotishka Datta & Yunfan Li & Nicholas Polson, 2020. "Horseshoe Regularisation for Machine Learning in Complex and Deep Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 302-320, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.