Spike and Slab Regression for Nonstationary Gaussian Linear Mixed Effects Modeling of Rapid Disease Progression
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2884
Download full text from publisher
References listed on IDEAS
- Veronika Ročková & Edward I. George, 2014. "EMVS: The EM Approach to Bayesian Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 828-846, June.
- Xiang Zhou & Peter Carbonetto & Matthew Stephens, 2013. "Polygenic Modeling with Bayesian Sparse Linear Mixed Models," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Gonzalo García-Donato & María Eugenia Castellanos & Alicia Quirós, 2021. "Bayesian Variable Selection with Applications in Health Sciences," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
- Dimitris Korobilis & Davide Pettenuzzo, 2020.
"Machine Learning Econometrics: Bayesian algorithms and methods,"
Working Papers
2020_09, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," MPRA Paper 100165, University Library of Munich, Germany.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 130, Brandeis University, Department of Economics and International Business School.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Yiming Hu & Qiongshi Lu & Ryan Powles & Xinwei Yao & Can Yang & Fang Fang & Xinran Xu & Hongyu Zhao, 2017. "Leveraging functional annotations in genetic risk prediction for human complex diseases," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-16, June.
- Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Yanyi Song & Xiang Zhou & Min Zhang & Wei Zhao & Yongmei Liu & Sharon L. R. Kardia & Ana V. Diez Roux & Belinda L. Needham & Jennifer A. Smith & Bhramar Mukherjee, 2020. "Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies," Biometrics, The International Biometric Society, vol. 76(3), pages 700-710, September.
- Hui Li & Rahul Mazumder & Xihong Lin, 2023. "Accurate and efficient estimation of local heritability using summary statistics and the linkage disequilibrium matrix," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Zhao, Kaifeng & Lian, Heng, 2016. "The Expectation–Maximization approach for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 1-11.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- McMahan Christopher & Baurley James & Bridges William & Joyner Chase & Kacamarga Muhamad Fitra & Lund Robert & Pardamean Carissa & Pardamean Bens, 2017. "A Bayesian hierarchical model for identifying significant polygenic effects while controlling for confounding and repeated measures," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 407-419, December.
- Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
- Wei Xu & Ines Mesa-Eguiagaray & David M. Morris & Chengjia Wang & Calum D. Gray & Samuel Sjöström & Giorgos Papanastasiou & Sammy Badr & Julien Paccou & Xue Li & Paul R. H. J. Timmers & Maria Timofeev, 2025. "Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
- Jiyeon Song & Subharup Guha & Yi Li, 2024. "Bayesian Inference for High Dimensional Cox Models with Gaussian and Diffused-Gamma Priors: A Case Study of Mortality in COVID-19 Patients Admitted to the ICU," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 221-249, April.
- Longpeng Bai & Kaiyi Wang & Qiusi Zhang & Qi Zhang & Xiaofeng Wang & Shouhui Pan & Liyang Zhang & Xuliang He & Ran Li & Dongfeng Zhang & Yanyun Han, 2025. "A Study of Maize Genotype–Environment Interaction Based on Deep K-Means Clustering Neural Network," Agriculture, MDPI, vol. 15(4), pages 1-21, February.
- repec:plo:pgen00:1007139 is not listed on IDEAS
- Veronika Ročková & Edward I. George, 2016. "Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1608-1622, October.
- Li Ma, 2015. "Scalable Bayesian Model Averaging Through Local Information Propagation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 795-809, June.
- Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2884.html