A hybrid deterministic–deterministic approach for high-dimensional Bayesian variable selection with a default prior
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-023-01368-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Veronika Ročková & Edward I. George, 2014. "EMVS: The EM Approach to Bayesian Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 828-846, June.
- Shiqiang Jin & Gyuhyeong Goh, 2021. "Bayesian selection of best subsets via hybrid search," Computational Statistics, Springer, vol. 36(3), pages 1991-2007, September.
- Casella, George & Moreno, Elias, 2006. "Objective Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 157-167, March.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Zhao, Kaifeng & Lian, Heng, 2016. "The Expectation–Maximization approach for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 1-11.
- Veronika Ročková & Edward I. George, 2018. "The Spike-and-Slab LASSO," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 431-444, January.
- Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- McLain, Alexander C. & Zgodic, Anja & Bondell, Howard, 2025. "Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
- Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
- Gonzalo García-Donato & María Eugenia Castellanos & Alicia Quirós, 2021. "Bayesian Variable Selection with Applications in Health Sciences," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
- Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
- Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
- Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
- Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
- Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
- Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
- Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
- Toshio Honda & Chien-Tong Lin, 2023. "Forward variable selection for ultra-high dimensional quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 393-424, June.
- Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
- Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
- Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
- Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
More about this item
Keywords
Forward selection; Greedy algorithm; High-dimensional Bayesian linear regression; Highest probability model (HPM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01368-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.