IDEAS home Printed from https://ideas.repec.org/r/spr/coopap/v57y2014i2p403-415.html
   My bibliography  Save this item

On the computational complexity of membership problems for the completely positive cone and its dual

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jinyan Fan & Anwa Zhou, 2017. "A semidefinite algorithm for completely positive tensor decomposition," Computational Optimization and Applications, Springer, vol. 66(2), pages 267-283, March.
  2. Rok Hribar & Timotej Hrga & Gregor Papa & Gašper Petelin & Janez Povh & Nataša Pržulj & Vida Vukašinović, 2022. "Four algorithms to solve symmetric multi-type non-negative matrix tri-factorization problem," Journal of Global Optimization, Springer, vol. 82(2), pages 283-312, February.
  3. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
  4. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
  5. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
  6. Jacek Gondzio & E. Alper Yıldırım, 2021. "Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations," Journal of Global Optimization, Springer, vol. 81(2), pages 293-321, October.
  7. Badenbroek, Riley & de Klerk, Etienne, 2022. "An analytic center cutting plane method to determine complete positivity of a matrix," Other publications TiSEM 088da653-b943-4ed0-9720-6, Tilburg University, School of Economics and Management.
  8. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
  9. Immanuel M. Bomze & Jianqiang Cheng & Peter J. C. Dickinson & Abdel Lisser & Jia Liu, 2019. "Notoriously hard (mixed-)binary QPs: empirical evidence on new completely positive approaches," Computational Management Science, Springer, vol. 16(4), pages 593-619, October.
  10. Jinyan Fan & Anwa Zhou, 2016. "Computing the distance between the linear matrix pencil and the completely positive cone," Computational Optimization and Applications, Springer, vol. 64(3), pages 647-670, July.
  11. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
  12. Gabriele Eichfelder & Patrick Groetzner, 2022. "A note on completely positive relaxations of quadratic problems in a multiobjective framework," Journal of Global Optimization, Springer, vol. 82(3), pages 615-626, March.
  13. Badenbroek, Riley & de Klerk, Etienne, 2020. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," Other publications TiSEM 876ff1ab-036c-4635-9688-1, Tilburg University, School of Economics and Management.
  14. Yuzhu Wang & Akihiro Tanaka & Akiko Yoshise, 2021. "Polyhedral approximations of the semidefinite cone and their application," Computational Optimization and Applications, Springer, vol. 78(3), pages 893-913, April.
  15. Chen Chen & Ting Kei Pong & Lulin Tan & Liaoyuan Zeng, 2020. "A difference-of-convex approach for split feasibility with applications to matrix factorizations and outlier detection," Journal of Global Optimization, Springer, vol. 78(1), pages 107-136, September.
  16. Qingxia Kong & Shan Li & Nan Liu & Chung-Piaw Teo & Zhenzhen Yan, 2020. "Appointment Scheduling Under Time-Dependent Patient No-Show Behavior," Management Science, INFORMS, vol. 66(8), pages 3480-3500, August.
  17. Anwa Zhou & Jinyan Fan, 2019. "A hierarchy of semidefinite relaxations for completely positive tensor optimization problems," Journal of Global Optimization, Springer, vol. 75(2), pages 417-437, October.
  18. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
  19. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
  20. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2018. "Copositive tensor detection and its applications in physics and hypergraphs," Computational Optimization and Applications, Springer, vol. 69(1), pages 133-158, January.
  21. Paula Alexandra Amaral & Immanuel M. Bomze, 2019. "Nonconvex min–max fractional quadratic problems under quadratic constraints: copositive relaxations," Journal of Global Optimization, Springer, vol. 75(2), pages 227-245, October.
  22. Anwa Zhou & Jinyan Fan, 2018. "Completely positive tensor recovery with minimal nuclear value," Computational Optimization and Applications, Springer, vol. 70(2), pages 419-441, June.
  23. Gizem Sağol & E. Yıldırım, 2015. "Analysis of copositive optimization based linear programming bounds on standard quadratic optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 37-59, September.
  24. Mitsuhiro Nishijima & Kazuhide Nakata, 2024. "Approximation hierarchies for copositive cone over symmetric cone and their comparison," Journal of Global Optimization, Springer, vol. 88(4), pages 831-870, April.
  25. Abbas, Amira & Ambainis, Andris & Augustino, Brandon & Baertschi, Andreas & Buhrman, Harry & Coffrin, Carleton & Cortiana, Giorgio & Dunjko, Vedran & Egger, Daniel J. & Elmegreen, Bruce G. & Franco, N, 2024. "Challenges and opportunities in quantum optimization," Other publications TiSEM eb4b8a22-9322-4251-8802-9, Tilburg University, School of Economics and Management.
  26. Anwa Zhou & Jinyan Fan, 2015. "Interiors of completely positive cones," Journal of Global Optimization, Springer, vol. 63(4), pages 653-675, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.