IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v110y2012icp30-42.html
   My bibliography  Save this item

Copula-based semiparametric models for multivariate time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
  2. Bücher, Axel & Volgushev, Stanislav, 2013. "Empirical and sequential empirical copula processes under serial dependence," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 61-70.
  3. Bruno Rémillard, 2017. "Goodness-of-Fit Tests for Copulas of Multivariate Time Series," Econometrics, MDPI, vol. 5(1), pages 1-23, March.
  4. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
  5. Arthur Charpentier, 2015. "Prévision avec des copules en finance," Working Papers hal-01151233, HAL.
  6. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
  7. Antoine Bergeron & Pierre Dutilleul & Carole Beaulieu & Taoufik Bouezmarni, 2022. "Dynamic Copulas for Monotonic Dependence Change in Time Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 683-693, November.
  8. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
  9. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, October.
  10. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
  11. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
  12. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
  13. Liang-Ching Lin & Sangyeol Lee & Meihui Guo, 2014. "The Bickel–Rosenblatt test for continuous time stochastic volatility models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 195-218, March.
  14. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  15. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
  16. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
  17. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
  18. Begin, Étienne & Dutilleul, Pierre & Beaulieu, Carole & Bouezmarni, Taoufik, 2020. "M-Vine decomposition and VAR(1) models," Statistics & Probability Letters, Elsevier, vol. 158(C).
  19. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2020.
  20. Yuhao Liu & Petar M. Djurić & Young Shin Kim & Svetlozar T. Rachev & James Glimm, 2021. "Systemic Risk Modeling with Lévy Copulas," JRFM, MDPI, vol. 14(6), pages 1-20, June.
  21. Simard Clarence & Rémillard Bruno, 2015. "Forecasting time series with multivariate copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-24, May.
  22. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
  23. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
  24. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  25. Berghaus, Betina & Bücher, Axel, 2014. "Nonparametric tests for tail monotonicity," Journal of Econometrics, Elsevier, vol. 180(2), pages 117-126.
  26. Yolanda S. Stander, 2023. "The Governance and Disclosure of IFRS 9 Economic Scenarios," JRFM, MDPI, vol. 16(1), pages 1-27, January.
  27. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
  28. Li-Hsien Sun & Yu-Kai Wang & Lien-Hsi Liu & Takeshi Emura & Chi-Yang Chiu, 2025. "Change point estimation for Gaussian time series data with copula-based Markov chain models," Computational Statistics, Springer, vol. 40(3), pages 1541-1581, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.