IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v36y2020i4p1193-1210.html
   My bibliography  Save this item

Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jiang, Ping & Nie, Ying & Wang, Jianzhou & Huang, Xiaojia, 2023. "Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme," Energy Economics, Elsevier, vol. 117(C).
  2. Oliver Grothe & Fabian Kachele & Fabian Kruger, 2022. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Papers 2204.10154, arXiv.org.
  3. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
  4. Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
  5. Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.
  6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  7. Simon Hirsch, 2025. "Online Multivariate Regularized Distributional Regression for High-dimensional Probabilistic Electricity Price Forecasting," Papers 2504.02518, arXiv.org.
  8. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
  9. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
  10. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
  11. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
  12. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
  13. Yang, Yifan & Guo, Ju’e & Li, Yi & Zhou, Jiandong, 2024. "Forecasting day-ahead electricity prices with spatial dependence," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1255-1270.
  14. Lin Han & Ivor Cribben & Stefan Trueck, 2022. "Extremal Dependence in Australian Electricity Markets," Papers 2202.09970, arXiv.org.
  15. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
  16. Philip Beran & Arne Vogler, 2021. "Multi-Day-Ahead Electricity Price Forecasting: A Comparison of fundamental, econometric and hybrid Models," EWL Working Papers 2102, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Oct 2021.
  17. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.
  18. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
  19. Maticka, Martin J. & Mahmoud, Thair S., 2025. "Bayesian Belief Networks: Redefining wholesale electricity price modelling in high penetration non-firm renewable generation power systems," Renewable Energy, Elsevier, vol. 239(C).
  20. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
  21. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
  22. Andersson, Jonas & Sheybanivaziri, Samaneh, 2023. "Probabilistic forecasting of electricity prices using an augmented LMARX-model," Discussion Papers 2023/11, Norwegian School of Economics, Department of Business and Management Science.
  23. Maia, Gisele de Oliveira & Barreto-Souza, Wagner & Bastos, Fernando de Souza & Ombao, Hernando, 2021. "Semiparametric time series models driven by latent factor," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1463-1479.
  24. Florian Ziel, 2020. "Load Nowcasting: Predicting Actuals with Limited Data," Energies, MDPI, vol. 13(6), pages 1-15, March.
  25. Arne Vogler & Florian Ziel, 2021. "Event-Based Evaluation of Electricity Price Ensemble Forecasts," Forecasting, MDPI, vol. 4(1), pages 1-21, December.
  26. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.