IDEAS home Printed from https://ideas.repec.org/r/eee/infome/v11y2017i2p498-510.html
   My bibliography  Save this item

Patterns of authors contribution in scientific manuscripts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zheng Xie, 2021. "A distributed hypergraph model for simulating the evolution of large coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4609-4638, June.
  2. Julian Decius & Miriam Schilbach, 2025. "Fair credit? The impact of shared first authorship on academic career evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(3), pages 1731-1750, March.
  3. Maria-Victoria Uribe-Bohorquez & Juan-Camilo Rivera-Ordóñez & Isabel-María García-Sánchez, 2023. "Gender disparities in accounting academia: analysis from the lens of publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(7), pages 3827-3865, July.
  4. Brito, Ana C.M. & Silva, Filipi N. & Amancio, Diego R., 2021. "Associations between author-level metrics in subsequent time periods," Journal of Informetrics, Elsevier, vol. 15(4).
  5. Corrêa, Edilson A. & Marinho, Vanessa Q. & Amancio, Diego R., 2020. "Semantic flow in language networks discriminates texts by genre and publication date," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  6. Zhang, Wanshu & Wang, Xuefeng & Chen, Hongshu & Liu, Jia, 2024. "The impact of early debut on scientists: Evidence from the Young Scientists Fund of the NSFC," Research Policy, Elsevier, vol. 53(2).
  7. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
  8. Ana C. M. Brito & Filipi N. Silva & Diego R. Amancio, 2023. "Analyzing the influence of prolific collaborations on authors productivity and visibility," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2471-2487, April.
  9. Guerreiro, Lucas & Silva, Filipi N. & Amancio, Diego R., 2024. "Recovering network topology and dynamics from sequences: A machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
  10. Edson Melo Souza & Jose Eduardo Storopoli & Wonder Alexandre Luz Alves, 2022. "Scientific Contribution List Categories Investigation: a comparison between three mainstream medical journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2249-2276, May.
  11. Walsh, John P. & Lee, You-Na & Tang, Li, 2019. "Pathogenic organization in science: Division of labor and retractions," Research Policy, Elsevier, vol. 48(2), pages 444-461.
  12. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
  13. Jeong, Yoo Kyung & Xie, Qing & Yan, Erjia & Song, Min, 2020. "Examining drug and side effect relation using author–entity pair bipartite networks," Journal of Informetrics, Elsevier, vol. 14(1).
  14. Thijs Devriendt & Mahsa Shabani & Karim Lekadir & Pascal Borry, 2022. "Data sharing platforms: instruments to inform and shape science policy on data sharing?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3007-3019, June.
  15. Carla Mara Hilário & Maria Cláudia Cabrini Grácio & Daniel Martínez-Ávila & Dietmar Wolfram, 2023. "Authorship order as an indicator of similarity between article discourse and author citation identity in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5389-5410, October.
  16. Tohalino, Jorge A.V. & Amancio, Diego R., 2022. "On predicting research grants productivity via machine learning," Journal of Informetrics, Elsevier, vol. 16(2).
  17. Brito, Ana C.M. & Silva, Filipi N. & de Arruda, Henrique F. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2021. "Classification of abrupt changes along viewing profiles of scientific articles," Journal of Informetrics, Elsevier, vol. 15(2).
  18. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
  19. Xiomara S. Q. Chacon & Thiago C. Silva & Diego R. Amancio, 2020. "Comparing the impact of subfields in scientific journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 625-639, October.
  20. Xiaoyu Cai & Tao Han, 2020. "Analysis of the division of labor in China’s high-quality life sciences research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1077-1094, November.
  21. Song, Haoyang & Hou, Jianhua & Zhang, Yang, 2022. "Catalytic capacity of technological innovation: Multidimensional definition and measurement from the perspective of knowledge spillover," Technology in Society, Elsevier, vol. 68(C).
  22. Li, Xin & Tang, Xuli, 2021. "Characterizing interdisciplinarity in drug research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 15(4).
  23. Chao Lu & Yingyi Zhang & Yong‐Yeol Ahn & Ying Ding & Chenwei Zhang & Dandan Ma, 2020. "Co‐contributorship network and division of labor in individual scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1162-1178, October.
  24. Wenhan Chao & Mengyuan Chen & Xian Zhou & Zhunchen Luo, 2023. "A joint framework for identifying the type and arguments of scientific contribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3347-3376, June.
  25. Xie, Zheng, 2020. "Predicting the number of coauthors for researchers: A learning model," Journal of Informetrics, Elsevier, vol. 14(2).
  26. Jingda Ding & Chao Liu & Qiao Zheng & Wei Cai, 2021. "A new method of co-author credit allocation based on contributor roles taxonomy: proof of concept and evaluation using papers published in PLOS ONE," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7561-7581, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.