IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v55y2011i4p1679-1695.html
   My bibliography  Save this item

A half-region depth for functional data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gijbels, Irène & Nagy, Stanislav, 2015. "Consistency of non-integrated depths for functional data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 259-282.
  2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
  3. Ana Arribas-Gil & Juan Romo, 2015. "Discussion of “Multivariate functional outlier detection”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 263-267, July.
  4. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
  5. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
  6. Francesca Fortuna & Alessia Naccarato & Silvia Terzi, 2024. "Evaluating countries’ performances by means of rank trajectories: functional measures of magnitude and evolution," Computational Statistics, Springer, vol. 39(1), pages 141-157, February.
  7. Nagy, Stanislav & Gijbels, Irène & Hlubinka, Daniel, 2016. "Weak convergence of discretely observed functional data with applications," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 46-62.
  8. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
  9. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
  10. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
  11. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
  12. Valencia García, Dalia Jazmin & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "Spearman coefficient for functions," DES - Working Papers. Statistics and Econometrics. WS ws133329, Universidad Carlos III de Madrid. Departamento de Estadística.
  13. Jiménez Recaredo, Raúl José & Elías Fernández, Antonio, 2017. "Prediction Bands for Functional Data Based on Depth Measures," DES - Working Papers. Statistics and Econometrics. WS 24606, Universidad Carlos III de Madrid. Departamento de Estadística.
  14. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
  15. Oluwasegun Taiwo Ojo & Antonio Fernández Anta & Rosa E. Lillo & Carlo Sguera, 2022. "Detecting and classifying outliers in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 725-760, September.
  16. Kuelbs, James & Zinn, Joel, 2015. "Half-region depth for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 86-105.
  17. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
  18. Fortuna, Francesca & Naccarato, Alessia & Salvati, Luca, 2024. "The functional distance-based approach: An application on long-term Metropolitan Development," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
  19. Ojo, Oluwasegun Taiwo & Fernández Anta, Antonio & Genton, Marc G. & Lillo Rodríguez, Rosa Elvira, 2022. "Multivariate Functional Outlier Detection using the FastMUOD Indices," DES - Working Papers. Statistics and Econometrics. WS 35665, Universidad Carlos III de Madrid. Departamento de Estadística.
  20. Hernández Banadik, Nicolás Jorge & Muñoz García, Alberto, 2017. "Kernel depth funcions for functional data," DES - Working Papers. Statistics and Econometrics. WS 24615, Universidad Carlos III de Madrid. Departamento de Estadística.
  21. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
  22. Kuelbs, James & Zinn, Joel, 2016. "Convergence of quantile and depth regions," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3681-3700.
  23. Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.
  24. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
  25. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
  26. Epifanio, Irene & Ventura-Campos, Noelia, 2011. "Functional data analysis in shape analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2758-2773, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.