IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v64y2002i2p159-175.html

Dimension reduction for the conditional kth moment in regression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Weiyu & Patilea, Valentin, 2017. "A new minimum contrast approach for inference in single-index models," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 47-59.
  2. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
  3. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
  4. Dong, Yuexiao & Yu, Zhou, 2012. "Dimension reduction for the conditional kth moment via central solution space," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 207-218.
  5. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
  6. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
  7. Wenquan Cui & Jianjun Xu & Yuehua Wu, 2023. "A new reproducing kernel‐based nonlinear dimension reduction method for survival data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1365-1390, September.
  8. Zhang, Hongfan, 2018. "Quasi-likelihood estimation of the single index conditional variance model," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 58-72.
  9. Zhao, Xiaobing & Zhou, Xian, 2014. "Sufficient dimension reduction on marginal regression for gaps of recurrent events," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 56-71.
  10. Yoo, Jae Keun, 2009. "Partial moment-based sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 450-456, February.
  11. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
  12. Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
  13. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
  14. Wen, Xuerong Meggie, 2007. "A note on sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 817-821, April.
  15. François Portier, 2016. "An Empirical Process View of Inverse Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 827-844, September.
  16. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
  17. Li, Zheng & Wang, Yunhao & Gao, Wei, 2025. "A principal mixed-order moments method for CKMS in dimension reduction," Statistics & Probability Letters, Elsevier, vol. 226(C).
  18. Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
  19. Yin, Xiangrong & Cook, R. Dennis, 2006. "Dimension reduction via marginal high moments in regression," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 393-400, February.
  20. Yin, Xiangrong & Dennis Cook, R., 2004. "Asymptotic distribution of test statistic for the covariance dimension reduction methods in regression," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 421-427, July.
  21. Yoo, Jae Keun, 2008. "Sufficient dimension reduction for the conditional mean with a categorical predictor in multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1825-1839, September.
  22. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  23. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
  24. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  25. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
  26. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
  27. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
  28. Kaida Cai & Xuewen Lu & Hua Shen, 2025. "Group sparse sufficient dimension reduction: a model-free group variable selection method," Computational Statistics, Springer, vol. 40(5), pages 2323-2366, June.
  29. Hilafu, Haileab & Yin, Xiangrong, 2013. "Sufficient dimension reduction in multivariate regressions with categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 139-147.
  30. Park, Yujin & Kim, Kyongwon & Yoo, Jae Keun, 2022. "On cross-distance selection algorithm for hybrid sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
  31. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
  32. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
  33. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
  34. Malinina, Tatiana (Малинина, Татьяна), 2016. "Some Options for Taxation of Income from Financial Instruments in the Context of the Qualitative Characteristics of the Tax System [Некоторые Параметры Налогообложения Доходов От Операций С Финансо," Working Papers 1445, Russian Presidential Academy of National Economy and Public Administration.
  35. Yoo, Jae Keun, 2013. "Advances in seeded dimension reduction: Bootstrap criteria and extensions," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 70-79.
  36. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
  37. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.