IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200552.html
   My bibliography  Save this paper

Robust Estimators are Hard to Compute

Author

Listed:
  • Bernholt, Thorsten

Abstract

In modern statistics, the robust estimation of parameters of a regression hyperplane is a central problem. Robustness means that the estimation is not or only slightly affected by outliers in the data. In this paper, it is shown that the following robust estimators are hard to compute: LMS, LQS, LTS, LTA, MCD, MVE, Constrained M estimator, Projection Depth (PD) and Stahel-Donoho. In addition, a data set is presented such that the ltsReg-procedure of R has probability less than 0.0001 of finding a correct answer. Furthermore, it is described, how to design new robust estimators.

Suggested Citation

  • Bernholt, Thorsten, 2006. "Robust Estimators are Hard to Compute," Technical Reports 2005,52, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200552
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22645/1/tr52-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hawkins, Douglas M. & Olive, David, 1999. "Applications and algorithms for least trimmed sum of absolute deviations regression," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 119-134, December.
    2. Gervini, Daniel, 2002. "The influence function of the Stahel-Donoho estimator of multivariate location and scatter," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 425-435, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    2. Luca Insolia & Ana Kenney & Francesca Chiaromonte & Giovanni Felici, 2022. "Simultaneous feature selection and outlier detection with optimality guarantees," Biometrics, The International Biometric Society, vol. 78(4), pages 1592-1603, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    2. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    3. Olive, David J. & Hawkins, Douglas M., 2003. "Robust regression with high coverage," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 259-266, July.
    4. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    5. Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
    6. Mafusalov, Alexander & Uryasev, Stan, 2016. "CVaR (superquantile) norm: Stochastic case," European Journal of Operational Research, Elsevier, vol. 249(1), pages 200-208.
    7. C. Chatzinakos & L. Pitsoulis & G. Zioutas, 2016. "Optimization techniques for robust multivariate location and scatter estimation," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1443-1460, May.
    8. Cizek, P., 2007. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1)," Other publications TiSEM eeccf622-dd18-41d4-a2f9-b, Tilburg University, School of Economics and Management.
    9. Nathan Sudermann-Merx & Steffen Rebennack, 2021. "Leveraged least trimmed absolute deviations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 809-834, September.
    10. Hawkins, Douglas M. & Khan, Dost Muhammad, 2009. "A procedure for robust fitting in nonlinear regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4500-4507, October.
    11. Debruyne, M. & Hubert, M., 2009. "The influence function of the Stahel-Donoho covariance estimator of smallest outlyingness," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 275-282, February.
    12. Cizek, P., 2004. "Asymptotics of Least Trimmed Squares Regression," Other publications TiSEM dab5d551-aca6-40bf-b92e-c, Tilburg University, School of Economics and Management.
    13. Klouda, Karel, 2015. "An exact polynomial time algorithm for computing the least trimmed squares estimate," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 27-40.
    14. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    15. Ekele Alih & Hong Choon Ong, 2015. "Cluster-based multivariate outlier identification and re-weighted regression in linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 938-955, May.
    16. Xin Dang & Robert Serfling & Weihua Zhou, 2009. "Influence functions of some depth functions, and application to depth-weighted L-statistics," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 49-66.
    17. Olive, David J., 2005. "Two simple resistant regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 809-819, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.