IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Computing the Least Quartile Difference Estimator in the Plane

  • Bernholt, Thorsten
  • Nunkesser, Robin
  • Schettlinger, Karen
Registered author(s):

    A common problem in linear regression is that largely aberrant values can strongly influence the results. The least quartile difference (LQD) regression estimator is highly robust, since it can resist up to almost 50% largely deviant data values without becoming extremely biased. Additionally, it shows good behavior on Gaussian data – in contrast to many other robust regression methods. However, the LQD is not widely used yet due to the high computational effort needed when using common algorithms, e.g. the subset algorithm of Rousseeuw and Leroy. For computing the LQD estimator for n data points in the plane, we propose a randomized algorithm with expected running time O(n2 log2 n) and an approximation algorithm with a running time of roughly O(n2 log n). It can be expected that the practical relevance of the LQD estimator will strongly increase thereby.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://econstor.eu/bitstream/10419/22644/1/tr51-05.pdf
    Download Restriction: no

    Paper provided by Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen in its series Technical Reports with number 2005,51.

    as
    in new window

    Length:
    Date of creation: 2005
    Date of revision:
    Handle: RePEc:zbw:sfb475:200551
    Contact details of provider: Postal: Vogelpothsweg 78, D-44221 Dortmund
    Phone: (0231) 755-3125
    Fax: (0231) 755-5284
    Web page: http://www.statistik.tu-dortmund.de/sfb475.html

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Struyf, Anja J. & Rousseeuw, Peter J., 1999. "Halfspace Depth and Regression Depth Characterize the Empirical Distribution," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 135-153, April.
    2. Hossjer, O. & Croux, C. & Rousseeuw, P. J., 1994. "Asymptotics of Generalized S-Estimators," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 148-177, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200551. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.