IDEAS home Printed from
   My bibliography  Save this paper

Predicting birth-rates through German micro-census data: a comparison of probit and Boolean regression


  • Hufnagel, Rainer


This paper investigates the complex interrelationships of qualitative socio-economic variables in the context of Boolean Regression. The data forming the basis for this investigation are from the German Micro-census waves of 1996 2002 and comprise about 400 000 observations. Boolean Regression is used to predict how birth events depend on the socio-economic characteristics of women and their male partners. Boolean Regression is compared to Probit. The data set is split into two halves in order to determine which method yields more accurate predictions. It turns out that Probit is superior, if a given socio-economic type is substantiated by less than about 30 observations, whereas Boolean Regression is superior to Probit, if a given socio-economic type is verified by more than about 30 observations. Therefore a "hybrid" estimation method, combining Probit and Boolean Regression, is proposed and used in the remainder of the paper. Different methods of interpreting the results of the estimations are introduced, relying mainly on simulation techniques. With respect to the reasons for the prevailing low German fertility rates, it is evident that these could be decisively higher if people had higher incomes and earned more with relative ease. From a methodological perspective, the paper demonstrates that Scientific Use Files of socio-economic data comprising hundred thousands or even millions of observations, and which have been made available recently, are the natural field of application for Boolean Regression. Possible consequences for future social and economic research are discussed.

Suggested Citation

  • Hufnagel, Rainer, 2008. "Predicting birth-rates through German micro-census data: a comparison of probit and Boolean regression," IÖB-Diskussionspapiere 3/08, University of Münster, Institute for Economic Education.
  • Handle: RePEc:zbw:ioebdp:308

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ioebdp:308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.