IDEAS home Printed from https://ideas.repec.org/p/zbw/bofrdp/335013.html

Forecasting inflation: The sum of the cycles outperforms the whole

Author

Listed:
  • Verona, Fabio

Abstract

Inflation dynamics reflect forces operating at different cycles, from short-lived shocks to longterm structural trends. We introduce the sum-of-the-cycles (SOC) method, which exploits this multifrequency structure of inflation for forecasting. SOC decomposes inflation into cyclical components, applies forecasting models suited to their persistence, and recombines them into an aggregate forecast. Across U.S. inflation measures and horizons, SOC consistently outperforms leading time-series benchmarks, reducing forecast errors by about 25 percent at short horizons and nearly 50 percent at long horizons. During the 2020-21 inflation surge, when many models - including advanced machine-learning methods - struggled, SOC retained strong performance by incorporating shortage indicators. Beyond accuracy, SOC enhances interpretability: financial variables dominate high- and business-cycle frequencies, Phillips Curve models are most informative at medium frequencies, and factor-based methods, forecast combinations, and shortage indices prevail at low frequencies. This combination of accuracy and transparency makes SOC a practical complement to existing tools for inflation forecasting and policy analysis.

Suggested Citation

  • Verona, Fabio, 2026. "Forecasting inflation: The sum of the cycles outperforms the whole," Bank of Finland Research Discussion Papers 1/2026, Bank of Finland.
  • Handle: RePEc:zbw:bofrdp:335013
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/335013/1/1948414511.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofrdp:335013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.