IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Consistent HAC Estimation and Robust Regression Testing Using Sharp Origin Kernels with No Truncation

Listed author(s):
  • Peter C.B. Phillips


    (Yale University, Cowles Foundation)

  • Sainan Jin


    (Yale University, Faculty of Arts & Sciences, Department of Economics (Box 8268))

  • Yixiao Sun


    (University of California, San Diego, Division of Social Sciences, Department of Economics)

A new family of kernels is suggested for use in heteroskedasticity and autocorrelation consistent (HAC) and long run variance (LRV) estimation and robust regression testing. The kernels are constructed by taking powers of the Bartlett kernel and are intended to be used with no truncation (or bandwidth) parameter. As the power parameter (rho) increases, the kernels become very sharp at the origin and increasingly downweight values away from the origin, thereby achieving effects similar to a bandwidth parameter. Sharp origin kernels can be used in regression testing in much the same way as conventional kernels with no truncation, as suggested in the work of Kiefer and Vogelsang (2002a, 2002b). A unified representation of HAC limit theory for untruncated kernels is provided using a new proof based on Mercer's theorem that allows for kernels which may or may not be differentiable at the origin. This new representation helps to explain earlier findings like the dominance of the Bartlett kernel over quadratic kernels in test power and yields new findings about the asymptotic properties of tests with sharp origin kernels. Analysis and simulations indicate that sharp origin kernels lead to tests with improved size properties relative to conventional tests and better power properties than other tests using Bartlett and other conventional kernels without truncation. If rho is passed to infinity with the sample size (T), the new kernels provide consistent HAC and LRV estimates as well as continued robust regression testing. Optimal choice of rho based on minimizing the asymptotic mean squared error of estimation is considered, leading to a rate of convergence of the kernel estimate of T1/3, analogous to that of a conventional truncated Bartlett kernel estimate with an optimal choice of bandwidth. A data-based version of the consistent sharp origin kernel is obtained which is easily implementable in practical work. Within this new framework, untruncated kernel estimation can be regarded as a form of conventional kernel estimation in which the usual bandwidth parameter is replaced by a power parameter that serves to control the degree of downweighting. Simulations show that in regression testing with the sharp origin kernel, the power properties are better than those with simple untruncated kernels (where rho = 1) and at least as good as those with truncated kernels. Size is generally more accurate with sharp origin kernels than truncated kernels. In practice a simple fixed choice of the exponent parameter around rho = 16 for the sharp origin kernel produces favorable results for both size and power in regression testing with sample sizes that are typical in econometric applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Yale School of Management in its series Yale School of Management Working Papers with number ysm347.

in new window

Date of creation: 28 Jul 2004
Handle: RePEc:ysm:somwrk:ysm347
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm347. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.