IDEAS home Printed from
   My bibliography  Save this paper

Parametric inference for functional information mapping


  • Leech, Dennis

    (Department of Economics, University of Warwick)

  • Leech, Robert

    (Division of Neuroscience and Mental Health, Imperial College London)

  • Simmonds, Anna

    (MRC Clinical Sciences Center, Imperial College London)


An increasing trend in functional MRI experiments involves discriminating between experimental conditions on the basis of fine-grained spatial patterns extending across many voxels. Typically, these approaches have used randomized resampling to derive inferences. Here, we introduce an analytical method for drawing inferences from multivoxel patterns. This approach extends the general linear model to the multivoxel case resulting in a variant of the Mahalanobis distance statistic which can be evaluated on the !2 distribution. We apply this parametric inference to a single-subject fMRI dataset and consider how the approach is both computationally more efficient and more sensitive than resampling inference.

Suggested Citation

  • Leech, Dennis & Leech, Robert & Simmonds, Anna, 2009. "Parametric inference for functional information mapping," The Warwick Economics Research Paper Series (TWERPS) 899, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:899

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:899. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Nash). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.